
NASA Technical Memorandum 100566

The Preliminary SOL Reference Manual
(NASA-Tfi-100566) T O E EBELI&IPIBY SCL N09-16354
(SULIIJG A l l C O € Z I B I Z A T I G N I A L G C A G E) EI&PBBEYCE
E A L U A L (N A S A) 504 p CSCL 098

Unclas
63/61 0189696

Stephen H. Lucas
Stephen J. Scotti

JANUARY 1989

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

PREFACE : SOL VERSION 1.22

What this Manual Describes . . .
The Sizing and Optimization Language, SOL, a high-level, special-purpose language

developed for the solution of sizing and optimization problems. This manual is intended as
a reference guide for those who wish to write SOL programs on a VAX computer running
the VMS system. An overview of SOL appears in NASA Technical Memorandum 10056.5
entitled, “ The Sizing and Optimization Language, SOL - A Computer Language for Design
Problems.” This manual is a more detailed reference document.

What this Manual Does Not Describe . . .
Detailed tutorial information on how to program, advanced system-related information,

or detailed reference information on the VAX/VMS command language. Wherever a more
extensive understanding of the operating system is required, readers are referred to the
appropriate VAX/VMS documentation for more information.

The Structure of This Document . . .
The installation guide explains how to install SOL on a VAX/VMS computers. Chapter

One describes how to compile, link and run SOL programs. Chapters Two through Eleven
provide language reference information and syntax rules. Additional information is found in
the appendices. Several of the chapters contain two levels of information: introductory and
advanced; the advanced level information is clearly delimited.

A Little about the Sizing and Optimization Language (SOL) . . .
SOL is a compiled language, and the SOL compiler produces FORTRAN object code. In

other words, the SOL compiler translates your SOL program into an equivalent FORTRAN
program. The SOL package consists of three elements: the SOL compiler; the SOL object
library, that needs to be on your system for SOL to work properly; and this reference manual.
Additional command procedures SOL and LSOL described in Chapter 1 are also included.

SOL was developed primarily for in-house use, so a t present SOL runs only on DEC
VAX/VMS systems. To support SOL you need a VAX/VMS computer. In addition, your
system needs at least two things. First, your system must have an editor (such as EDT) so
that you will be able to type your SOL programs. Any editor will do, but full-screen editors
are generally better for composing programs. Second, you will need the VAX FORTRAN
compiler. Since the SOL compiler translates SOL into FORTRAN, you will need to compile
and link the FORTRAN to execute your program.

The SOL compiler is a Pascal program written using the MYSTRO compiler development
system created at the College of William and Mary and available through COSMIC. By
utilizing MYSTRO, the SOL compiler was developed fairly rapidly, and includes an error
recovery capability

Notation Used in this hlanual to Describe Syntax . . .

following syntactic conventions are used in these descriptions.
Descriptions of the syntax of SOL statements appear regularly in this manual. The

0 Words and letters in typewriter type indicate that you should type the word
or letter as shown.

1

e Symbols, parentheses and so forth that appear in the descriptions should be
typed as shown.

Items that appear inside of angle brackets, (and), indicate a template to be
filled in at your choice. The syntax for each angle bracket template is usually
described separately.

e

1)iffcircnces Iwtwcwi SOL Version 1.22 and previous versions . . .
OPTIMIZATION:

compatible simply delete all \ symbols from optimizer option selections.

FORTRAN blocks:

The \ is no longer used to prefix Optimizer Options. To make previous SOL programs

FORTRAN blocks are allowed in the declaration section of the main program or subrout,ine.
ALL FORTRAN type declarations MUST be placed in FORTRAN blocks inside
a SOL declaration section. The SOL compiler does NOT catch this error,
but the FORTRAN code created by the compiler COULD FAIL TO COMPILE
if this rule is not followed. Simply place all FORTRAN type declarations inside
the appropriate SOL declaration sections to make previous SOL programs
compatible.

e

COMPONENTS:
A new ASSEMBLAGE statement has been added. Please see Chapter 7 for details. Basically,

SUMMARIZATION variables are no longer declared in the declaration section of a main program
or subroutine, and the outermost COMPONENT now has a distinct ASSEMBLAGE syntax with its
OiVN declaration section for SUMMARIZATION variables.

The way summarization variables are declared has changed.

Thc way iteration variables are declared has changed.

e

e

Simply make the outermost COMPONENT an ASSEMBLAGE statement and move summariza-
tion variable declarations into the ASSPiBLAGE declaration section to make previous programs
compatible. Also if iteration variables are used, they must be declared according to the new
syntax in Chapter 7.
DECLARATION sections:

declaration section. A new ASSEMBLAGE statement now declares SUMMARIZATION variables.
SUMMARIZATION variables CANNOT be declared inside a main program or a subroutine

Table of Contents

Installation: Installing SOL on a VAX/VMS Computer
Chapter 1: Compiling, Linking and Executing Sol Programs
1.1 COMPILINC; A SOL PROGRAM: THE SOL COMMAND 1-2

1.1.1 The SOL File Parameter . 1-3
1.1.2 The SOL Compiler Options 1-3

1.1.2.1 The listing option, I, .
1.1.2.2 The cross reference option, X 1-4
1.1.2.3 Tlie create FORTRAN option, O 1-5
1.1.2.4 The parse trace option, P 1-5

1-5
1.2 LINKING A SOL PROGRAM: THE LSOL CO~IRIANL) 1-5
1.3 EXECUTING A SOL PROGRAM: TIIE RUN c o m i m r) 1-7
1.4 SAMPLE LISTING . 1-7

1.4.1 The Source Listing . 1-12
1.4.2 The Cross-reference Listing 1-12

1-4

. 1.1.2.5 The print rules option, D

1.4.3 The Error Listing . 1-13

Chapter 2: An 1ntroduct.ion to SOL
2.1 OVERk'IEW OF SOL . 2-1

2.1.1 Data Types . 2- 2
2.1.2 Variable Initialization . 2-3
2.1.3 Executable Statements . 2-4
2.1.4 Subroutines . 2--5
2.1.5 Structure of a SOL program 2- 6

2.2 LEXICAL ELERIENTS . 2-7
2.2.1 Charactc>r Set . 2 - ~ 7

2.2.2 Special Symbols 2-8
2.2.3 Reserved \\'ords 2-9

.

.
. 2.2.4 Identifiers 2-9

2.2.5 Numbers . 2-1 0
2.3 CORIJIENTS . 2-1 1
2.4 CONTISUATIOS LISES . 2-11

Chapter 3: Data 'I'vpes

3.1 THE INTEGEIL TYPE . 3-1
3.2 TIIE LOGICAL TYPE . 3-2
3.3 THE REAL TYPE . 3--2
3.4 TYPE CHECKING . 3--3

3.4.1 Assignmmt Compatibility Rules 3--4

...
111

3-4 3.4.1.1 compatibility rules for regular assignment
3.4.1.2 subroutine parameter passing assignment compatibility rii1c.s . . 3 -4

3.4.2 Operator Compatibility Rules 3-5

.

Chapter 4: Expressions
1.1 ARITIIMETIC EXPRESSIONS .
.l.2 LOGICAL EXPRESSIONS . 4-2
4.3 OPERATOR PRECEDENCE . 4-4

3-12

4-4
4- 4
4-5

-1.3.1 Precedence Rules for Arithmetic Expressions
4.3.2 Precedence Rules for Logical Expressions
4.3.3 Using Parentheses to Force Precedence

.
.

.

Chapter 5: The Declaration Section
5.1 V.ARItIBLE TJ'PE DECLARATIONS 5 -2
5.2 SUBROUTIXL DECLARATIONS . 5-3
5.3 THE DECLARATION SECTION IN SGBROUTINES 5-6

Chapter 6: Statements
6.1 THE ASSIGSIIENT STATEMENT . 6-2

6.1.1 Arithmetic Assignments . 6-2
6.1.2 Logical Assignments . 6-3

6.2 THE PRINT STATEhlENTS . 6-4
6.2.1 Print Statement . 6-5

I '
6.2.2 Formats for Print and Summarize Print Statemcnts 6 6

6.2.2.1 E format . 6 6
. 6-8 6.2.2.2 F format

6.2.2.3 I format . 6-9
. 6- 10 6.2.2.4 L format

6.3.1 Scope Rrilcs for IF Statements 6-14
6.3 THE COKDITIONAL ST,lTEMEKT (IF/TIIEA-/ELSE) 6-12

6.4 REPETITIVE STATElIENTS . 6-17
. 6-1 7

6.4.2 The Conditional Do Loop 6-2 1
G . 5 .4S S E 1 I I3 L AG E and C 0 3 I P OX EST STAT I? \ 1 I.: ST S 6 -22
6.6 THE OPTI~I IZE STATEIIENT . 6-23
6.7 THE SUBROUTISE C'XLL . 6-23
6.S FORTR-IX BLOCKS - AD\'rlNCED l l A T I ~ R I . \ I ~ 6-24

Chapter 7: Sizing: Assemblages and Components
7.1 ASSElIBLAGEs and C0;2lPONENTs 7-2

7.1.1 Summarization Variablo Declaration 7- 5 5

7.1.1.1 summarization variable and expression variat)l t> d (d n r a t i o i i \ . . 7-7

I
6.4.1 The Iterative Do Loop

I
.

I

I

7.1.1.2 suniiriary title declaratioris 7-1 1
7.1.1.3 sumniarize print statement 7 16

I \

11.4 ASSEMBLAGE & COiClPONENT SCOPE 11-4

L\ 1’1’k:K 111 (y 1:s
AI’I’ENDIS A: 1)SI‘ GRAhIAl.\It 1‘0I< SOL A - I
APPENDIX B: COhlPILER ERROR hlESSAGE EXl’Li\NAL‘IONS 13-1
APPENDIX C: SOL MACROS . C-1
C.l SIMPLE MACROS . C-2

C.l.l General Rules for Simple Macro Definitions c-2
C.1.2 Simple Alacro Definition Replacement Text c-4

C.2 PARARlETRIC AlACROS . C-5
(2.2.1 Parametric hfacro Definition C-G
C.2.2 Parametric Macro Use . C-7

C.2.2.1 arguments to parametric macros C S
C.2.2.2 association Iwtiveen arguments and paranictcm c-IO

C.3 DELIXIITED AI.ICROS . C 11
C.3.1 Delimitctl Simple hlacros c- I 1
C.3.2 Delimited Parametric Macros (7-1 3

C.4 PREDEFINED 11ACROS . C-16
C.4.1?DEF . C--1 G
C.4.2 ?XDEF . C-17
C.4.3 ?INCLUDE . C-17
C.4.4 ?LIST . C-17
C.4.5 ?CHECK-LIST . c-19
C.4.6 ?CO1\lPOSENTn’X~lE c- 20
C.4.7 ?APPESD and ?X.\PPENI) C-20

C.5 SUllhlARY OF hlACROS . C-22

7.1.2 Extcwded Itleiitifier Notation 7 I!)
i .2SCOPERULESFORASSEXiBLAGEsANDCOMPONENTs 7-22
7 .3 ASSEJIBLAGE and/or COMPOiYENT ITERATION 7-27

7.3.1 How Iteration \\rks . 7-29

Chapter 8: The Optimize Statement
8.1 DESIGN VARIABLE DECLARATIONS s-4
8.2 CONSTRAINT DECLARATIONS . 8-.5

8 -6

8-10

S.2.1 Constraint Scaling - ADi'ANCED 1IATERI.AL

S.3.1 Strategy. Optimizer, and One-dimensional Search Settings
8.3.2 Output of Optimization Results 8-1 3
8.3.3 Kormalization of Design Variables 8-19
8.3.4 ADS Parameter Settings s- 20

8 8.3 Optimize Statement (Options) Section - ADVANCED AIATERIAL 8-s

C h a ~ t e r 9: Subroutines
9.1 SOL SVBROUTINES: DECLARATION, IMPLEMENTATION, and CALLS . . 9-2

9.1.1 Subroutine Declaration 9-3
9.1.2 Subroutine Implementation 9--3
9.1.3 The Subroutine Call . 9-5

9.2 SUBROUTINE PARAMETERS . 9-6
9.2.1 Formal Parameters 9 G

.
.

.
9.2.1.1 formal independent parameters 9-6
9.2.1.2 formal dependent parameters 9-S

9.2.2 Actual Parameters . 9 -9
9.2.2.1 actual independent parameters 9-1 0
9.2.2.2 actual dependent parameters 9- 10

9-1 1
9.3 THE SCOPE RI-LES FOR SI'BROVTINES 9-12

9.2.3 The Relationship Between Actual $2 Formal Parameters

ChaDter 10: Predeclared Routines
ABS . 10-2
cos . 10-2
ESP . 1&2
LOG . 10-2
IST . 10-2
S I X . . . 1 0 - 2
SQRT . 10-2
TXN . 10-2

Chapter 11: Scope Rules

11.2 SUBROUTISE SCOPE . 11-2
11.3 IF/THEN/ELSE SCOPE . 11-3

11.1 THE hlAIN PROGR-A1II . 11-2

V

The Sizing and Optimization Language is installed on a VAX/VMS coriiputer in s c i ~ m l
stcps. First, a sj-stem environment is created which itic-ludes creating a SOL clircctory.
Second, the SOL system is read from the delivery media (i.e. the SOL tape) into the
SOL directory. The instructions in this installation guide are geared towards the use of a
VAX TK50 magnetic tape cartridge. Finally, several SYSTEM wide parameters and file
protections are set.

Installation requires the assignment of logical names and will require system management
privileges (i.e. you must login as SYSTEM). Although this guide attempts to make installa-
tion simple and easy, system privileges and some understanding of systems management is
required. To install SOL, follow the steps below:

1. LOGIN as system:

You must choose the exact disk drives and directory on which to install SOL. The
installation instriictions given below assume that the installer has system privilcges so that
system-wide parameters can be set and system login corriniand procediires altered.

2. MOUNT the SOL taDe:

Your SOL tape contains a single save-set containing all the files rccluired for SOL,
including the compiler. optimizer and runtime library. The s a v e s e t was cwated using the
I*.-\ S BACKUP command.

WRITE-PROTECT the tape by slidiiig thc writC-protcct switch on tlie
front of the tape to the left. This will prevc’rit aiiy data on the tape I‘roin
being accidently destroyed during the installation. Tnstructions for this step
ciiii be found in Chapter 5 of tlic .\/icro C‘.\(S [!s . rr :s Prirucr or in Chapter 1
of the JlicrolfMa5’ User’s .1Iariucil: Part 1.

LOAD the tape hy inserting it into tlic tape drive. Iiist.riictioiis for this
step can bc found in the appropriate VAX tloc.rinic.iit,i~tioii. b’or cxamplc, i n
Chapter 5 of the Micro VdiS User’s Prirrir I’ o r in (:lia.pter 1 of tlic Micro L’MS
User’s .Ilanual: Part 1.

1)

2)

Install ing SOL O R n VAX/I’L14S Computer -1

3) MOUNT t h e t a p e with the following coininand:

MOUNT /FOREIGN t ape-dr ive :

\ \ ' I I c w t ape-dr ive is the namc (e.g. $TAPEl) of tlw t apc t l r i w on which you
moiintcd thc tape. The physical m i n e for the TIi5O cartritlgc t a p : tlrivc. is
MUAO, or i f you have two t a p e drives, MUAO and MUBO. 'rlic system-deiincd
logical name for t h e TK50 device is $TAPEl.

If you wish t o identify t h e files on t h e SOL delivery t a p e before procwding with the
installation, issue the following commands AFTER mounting the tape:

BACKUP/REWIND/LIST t ape-dr ive :
where tape-dr ive is t h e name of tlie drive on which t hc t a p e was moiinted.

3. Crea te t h e SOL System Environment

Crea te a high-level SOL directory so tha t SOL can bc used by several i w r s with t h c
following command:

CREATE/DIRECTORY sys$sysdevice:[SOL~

Next, set the file protection of this directory such that all users are able t o access the
files t o b e placed in it with the following command:

SET PROTECTION=(WORLD:RE) sys$sysdevice:[00000O]SOL.dir

Define t h e logical name SOL$DIR by issuing the command 11elow:

DEFINE/SYSTEM SOL$DIR sys$sysdevice : [SOL]
Since the SOL$DIR logical name must cxist a t all times, you should add this definition

s ta tement t o your system s t a r t u p procedure. usually found in t lie sys$manager directory
under the name s y s t a r t u p .corn:

1)
2) Add the line:

Use an editor (e.g. EDT) t o edit the s y s t a r t u p . corn command procedure.

$ DEFINE/SYSTEM SOL$DIR sys$sysdevice:[SOL]

t o the command procedure so tha t the SOL$DIR logical namc will always bc
defined.

EXIT tlie editor, making sure t h e changes t o s y s t a r t u p . corn are saved. 3)
.\ command procedure called SOLSYMBOLS .COM is included with the SOL system and

contains the s tandard symbol definitions tha t allow the SOT, iiser to invoke the SOL compiler
a n d linker as discussed in t h e SOL user's nianual. T h e following h i e should b e added t o the
s\.stern-wi.ide login command procedure. typically SYS$MANAGER : SYLOGIN . COM:

$ QSOL$DIR:SOL-SYMBOLS
He sure t o add the command t o t h c systwi-widc login p r o (~ ~ l i i r (* siic11 t liat the tlefinvtl

siymbols will be available for all users, avoiding sectioiis of' t 1 1 ~ login procedure that, arc only
executed for SYSTEM or other privileged users.

4. BACKUP the tape into the SOL directory

Once the SOL directory has been created, t h e SOL files must be copied from t h e t a p e into
the directory, SOL$DIR. Since the files are stored as a save-set, t he VAX BACKUP command
is usccl. Type the following to copy the SOL files:

BACKUP/REWIND tape-drive:SOL.BCK SOL$DIR
T h e required files will be copied into the SOL$DIR directory. W i t h TK50 tapes, this

operation can be slow so be patient.

S e x t , set t he file protection so t h a t all users are able to access the individual files withill
the SOL directory with the following command:

SET PROTECTION = (W0RLD:RE) SOL$DIR:*.*
To verify t h a t t he files have been properly read from tlic t a p . issue tlic following corn-

mancl :

DIRECTORY /S I ZE SOL$DIR
The following should be displayed:

Directory SYS$SYSDEVICE: [SOL]

DVBOUNDS.FOR;I
DVNORH.FOR;l
LINKSOL.COM;l
0PTIMIZER.FOR;I
0PTIHIZER.OBJ;I
OPT-0UTPUT.FOR;l
RUNERR.FOR;l
RUNSOL.COH;I
SOL-COHPILER.EXE;1
SOL-COHPILER.PAS;I
SOL-LIB.OLB;l
SOL-SYMBOLS.COH;l
UNNORHALIZE.FOR;l

4
3
9

1008
550
42
6
2

378
1020
89 1

1
3

Total of 13 files, 3917 blocks.

5 . DISMOUNT the SOL tape

To dismount the t ape from the t a p e drive, type tlic followii~g:

DISMOUNT tape-drive
i v l ~ c w tape-drive is t he nainc of tlic tapv (1i.ivv on wliidi you mounted t , l i c ~
tape (e.g. $TAPEl). Oncc the tape tlisniouitt is cornplcted, the t ape can be
rcrnoved.

6. VERIFICATION

This completer; the installation process. To verify that things arc workiiig:

1) I, o (: o I 7'1- as s w r 13 M .

2) 1,OCIN as a normal user and CREATE a siniph> Sol, prograni using a n
wlit o r . k'or cwmiplc:

PROCRAH test

END test
PRINT 'this is a test'

Sa1.e the program in a file named t e s t . s o l

Compile the program with the command SOL t e s t .

Link the program with the command LSOL t e s t . Jbu will Le prompted for
external file names: simply type a carriage-returii in response to the prompt.
Run the program with the command RUN t e s t .

3)
-1 1

5)
If the program compiles. links, and runs (producing the output t h i s i s a t e s t for the

esample above). then it is reasonable to assume SOL has been installed properly. One might>
also try shutting the machine doivn, and then repeating steps 2) through 5) ahove to further
i-erify the installation.

7. User Authorization

SOL'S macro features are iniplemented with files. A s a result, i t is possible that SOL
programs will require many files to be opened at once. VAX/VhlS systems set a limit on
the number of files that a user can have opened at once. \I'hen a SOL program exceeds the
\'.\X/VMS limits. a system error message will be displayed and the SOL program will halt.
01ic can avoid this problem hy increasing the number of files a user is permitted to have
open through the iise of the AUTHORIZE utility. described in the .\lrcro VMS Usei*'s Manua l ,
f 'urt !I, Appendi . r . 1UTH. To increase the file limits, do the following:

1) Login as SJ'S'TlX.

2) Switch to the proper directory and r u n t lw A~~' l ' I IORI%l~: l i t ility with the
fol lo \v i n g co I 11 ilia n d s :

SET DEFAULT SYS$SYSTEM
RUN AUTHORIZE

3) 1 . 1 1 ~ UAF> prompt synibol . ; l i o i i l t l a p p m r . 11icr(-~is(> t l i e file liinits for LA(' I I
SOI, user ivho ncecls a higher liniit wit11 the foIlo\ving coiniiirtiid:

MODIFY iiscr /f illm=200

where "user" is the login name of the user rt.cluiring an increased file limit.
The AUTHORIZE utility should return t h e message:

%UAF-I-MDFYMSG, user record(s) updated

to signify the necessary changes have been made.

4) Increase the number of bytes allowed in buffered 1/0 operations with the
command:

MODIFY user /bytlm=10000

where ‘‘user‘‘ is the login name of the user requiring an increased byte limit,.
The AUTHORIZE utility should return the message:

%UAF-I-MDFYMSG, user record(s) updated

5) The changes can be verified with the command:

SHOW user

wlicre “user” is the login name of the user.

Exit the AUTHORIZE utility with the command: 6)
EXIT

I t will not be necessary to increase the “opened file” limits unless macros are iiscd
extensively.

~ Chapter 1
Compiling, Linking, and Executing SOL Programs

SOL is a compiled language. After creating a SOL source program with your favorite
editor, you must compile the program. The compilation process translates your SOL pro-
gram into an equivalent FORTRAN program. A computer program, the compiler, does the
translation. You compile your program with the SOL command procedure described below.
This command invokes the SOL compiler to translate your SOL program into FORTRAN.
After using the SOL command to compile your program, you must use the LSOL command
procedure to l ink your program. The LSOL command compiles the FORTRAN program, and
links it with the SOL library routines. The result of the LSOL command is an executable
version of your program, a version which is ready to be run on the computer. Finally, the
VAX RUN command is used to run your program.

In summary, to create and run a SOL program, do the following:

1)
2)
3)
4)

- Write a SOL program.
- Use the SOL command procedure to compile the SOL program
- Use the LSOL command procedure to link the SOL program.
-- Use the \.‘AX RUN command to run the program.

E X A hl PLES :

For instance, to compile, link, and execute a SOL program named t e s t s o l . sol, type
the following sequence of commands:

SOL t e s t s o l
LSOL t e s t s o l
RW t e s t s o l

The SOL command will invoke the SOL compiler which translates t e s t s o l into an equiv-
alent FORTRAN program named t e s t s o l .for. The LSOL command invokes the FORTRAN
compiler to compile t e s t s o l .for, and links the result with needed library routines.

This chapter describes how to use the SOL and LSOL command procedures. The chapter
is divided into four sections:

1.1
1.2
1.3
1.4

- Discusses the SOL command
- Discusses the LSOL command

- Discusses the VAX R U N command

- Discusses an example LISTING produced by thc SOL corripilcr

Compiling, Linking, and Executing SOL Programs 1- 1

1.1 COMPILING A SOL PROGRAM: THE SOL COMMAND PROCEDURE

The SOL command invokes the SOL compiler. The primary functions of the SOL compiler
are:

to t.rarislatc SO t, source statemcnts iiito a n t~clt~ivi\lci~b FO\X'l'Ti AN I)rOgrill11

arid to issiie any error messages.

to optionally generate a LISTING and/or CROSS-REFERENCE file.

1)

2)
The SOL command is not invoked from the editor, or from your SOL program. Once you
have created your SOL program, save the program and exit from the editor. At the system
prompt, type SOL and a space followed by the filename of your SOL program, another space
and the compiler options. Press the RETURN or ENTER key. This will invoke the SOL
compiler.
More formally, the SOL command has the following syntax:

SOL (SOL file) (compiler options)
where:

(SOL file) is the name of your SOL source program (use standard VAX file
names; the suffix .sol is assumed).

(compiler options) are the optional settings for the compiler. These are discussed in
detail in Chapter 1, section 1.1.2.

The following restrictions hold for the SOL command:

1) The (SOL file) and the (compiler options) must appear on the same line.
One or more spaces hlUST appear between the word SOL and (SOL file) and
between the (SOL file) parameter and the (compiler options) parameter.

Type a carriage return once you have finished typing the SOL command and
pa ramet ers .

2)

3)

Thus, the SOL command procedure has two parameters: the name of the SOL source
file. and optional qualifiers €or the compiler. The following examples illustrate the use of the
SOL command procedure:

1) SOL optimum

2) SOL optimum.so1 lx

The name of the program being compiled, t lie conipiler options solected, and the current
settings €or the compiler options are displayed on the scree11 aftc.1- t h e SOL command is given.

Compiling, Linking. and Executing SOL Programs 1-2

For example, the invocation SOL Optimum lx will cause the following to be displayed:
+ SOL COMPILER UTILITY ***
e****** VERSION 1.00 **I****
Compiling OPTIHUH with options W

SOL Compiler v . 1 . 2 , Current Option Settings are:
CODE OPTION SETTING

D PRIllT RULES OFF
L LISTING OFF
P PARSE TRACE OFF
0 CREATE FORTRAN 019
X XREF OFF

*** This run of the SOL Compiler U t i l i t y is complete ***
Further details about the SOL command are found i n the following three sections:

1.1.1 - Discusses the (SOL file) parameter.
1.1.2 - Discusses the (compiler options) parameter.

1.1.3 - Discusses the output of the SOL compiler.

1.1.1 THE SOL FILE PARAMETER

The (SOL file) parameter to the SOL command is the name of the SOL source file
containing the program to be compiled. The file must exist in the current directory, or t,he
complete file specification must be given.

The SOL compiler assumes a .SOL suffix if no suffix is explicitly given in the (SOL file)
parameter. For instance, the SOL command:

SOL filename
is equivalent to iising the SOL compiler with the following command:

SOL filename.so1
Therefore, it is a good idea to suffix your SOL files with the suffix, “.SOL.” This suffix will
distinguish SOL files from other programs, and save typing when using the SOL command
to compile your SOL programs.

Compiler options are specified in the (compiler options) parameter. The SOL compiler
has default settings, so (compiler options) can be left blank.

Compiling, Linking, a n d Executing SOL Programs 1-3

Tlic (compiler options) parameter is one of the following:

1) nothing - use the default settings. The default settings are:

1 (listing) . ON
o (create FORTRAN code) ON
x (cross-reference) . ON
p (parse trace) . OFF
d (print rules) . OFF

2)
3)
4)

1 - turn off the listing option

o - turn off the generation of FORTRAN code

x -- turn off t,he Cross-reference option

5)
6)
7)

p - turn on the parse tracing

d - turn on the printing of parse rules

lpd or l o x or lo
one or more of 2) ... 6)’ not separated by spaces or carriage returns. E.g.,

Each of the options 2) through 6) is discussed in detail in the five sections that follow.

1.1.2.1 The Listing Option, L

The SOL compiler produces a source listing file by default. This file has the same name
as the source file, but with the suffix “.list”. For example, compiling “example.so1” will
produce a listing file named “examp1e.list”.

The Listing option turns off the SOL compiler’s listing option, so that no listing is
produced. Since the cross-reference listing goes into the listing file, turning off the compiler’s
listing option also turns off the cross reference option. For example, the following command
turns off the SOL compiler’s generation of a listing:

SOL example 1

A sample listing is discussed in Chapter 1, section 1.-1.

1.1.3.2 The Cross-reference Owtion. X

The SOL compiler produces a cross-reference index of all variahlcs in tlic compiled SOI,
program by default. The cross-reference index appears in the listing file, also produced
automatically The cross-reference index lists each variablc, and t h c lincl numbers where the
variable is accessed.

Invoking the Cross-reference option turns off the SOT, compiler’s cross-reference in the
listing. Since the Cross-reference information is produccd i l l thc listing, turning off the listing
option will also turn off the cross-reference option.

Compiling, Linking, and Executing SOL Programs 1-4

The three example invocations below turn off the cross-reference option:

1) SOL example x

‘2) SOL example 1

3) SOJ, example lox

A s;~t~ipl(- f . ros~-r (! fc r (~r i~(~ itit1c.x is tlisciisscd i i i (! t l i ~ l) t c ~ r I , sc*c.t,ioii I :I.

1.1.2.3 The Create FORTRAN Option, 0

As a default, the SOL compiler automatically produces an objcct file containing a FOR-
T I t A N program equivalent to the compiled SOL. The object file contains the FORTRAN
output from the SOL compiler. The name of the file containing the FORTRAN output is
the same as the SOL source file, except it has a “.for” suffix. For example, “example-l.sol”
will produce a FORTRAN output file named “example-1 .for”

The Create FORTRAN option turns the SOL compiler’s FORTRAN code generator off,
so that FORTRAN output will not be produced. To turn off the code generation, the 0
option is specified. For instance, the following command will turn OFF the code generation
of the SOL compiler:

SOL example-1 o

The FORTRAN output file, produced when the Create FORTRAN option is left on,
must be linked with the LSOL command, discussed in Chapter 1, section 1.2.

1.1.2.4 The Parse Trace Option, P

The parse trace option is intended for debugging the SOL compiler, and therefore is not
described. Unless modifying the SOL compiler source code, the P option is not needed.

1.1.2.5 The Print Rules Option, D

The print rules option is intended for debugging the SOL compiler, and therefore is not
~ l (x r i l) c v l . liiilcss inotlifying the SOL coiripilcr sourc~’ c.o(l(3, t l i e . 1) opt.ioii i s not, needed.

1.2 LINKING X SOL PROGRAM: THE LSOL COXlM.4ND PROCEDURE

The LSOL command invokes the SOL linker. The primary functions of the SOL linker c
are:

to invoke the VAX FORTRAN compiler to compile the FORTRAN output
produced by the SOL compiler.

1)
4

Cornpiling, L i n k i n g , and F:..rf-cufing SOL Programs 1-5

to link the output of the FORTRAN compiler to a standard library of rou-
tines, and also to link with any other user-provided FORTRAN subroutines
needed by the SOL program. This step produces an executable version of
the SOL program.

7’0 l ink a SOT, source program, invoke the LSOL command from tlic tcrniiiial. After using
tlic SOL conirriancl procedurc, at tlic systcni prompt typo LSOL a n d il spaw followcd hy t h c i
iianic of tlic file to tw linked. Itemcmbcr ttiat thc file k i n g l i i i k c d is t t i o orrlpri i of the SOI,
compiler, so no suffix or a .FOR suffix should be used. (c.g. “example” or “example.for”)

More formally the invocation has the following syntax:

2)

LSOL (SOL file)
where:

(SOL file) is the name of the FORTRAN program generated by the SOL com-
piler. (your SOL program and the equivalent FORTRAN program,
produced by the SOL command, automatically have the same names).

The following restrictions hold for the LSOL command:

1)

2)

The word LSOL, and (SOL file) must appear on a single line.

Oiic or more spaces MUST appear betwecn the word LSOL arid (SOL file)
l’ype a carriage return once finished typing the LSOL command procedure
and parameters.

Thus, the LSOL command procedure has one paxameter, the name of the SOL object file.

3)

For example, the following calls will invoke the LSOL Command Procedure:

1) LSOL example-1

2) LSOL optimum.for
3) LSOL optimum

The LSOL command will prompt you for the names of any external FORTRAN routines
called by your SOL program. For example, the command LSOL Optimum will cause the
following to be displayed:

*** SOL LINKER UTILITY ***
****** VERSION 1.00 *****
Linking OPTIMUM t o SOL Library Routines

Please answer Y o r I
Do you have external FORTRAN (. o b j) f i l e s t o be linked?

In response to this prompt, you should type Y if’ you have external routines to link and
N if j*ou do not. If you answer Y , you will be prompted for the external file’s name, with the
following prompt:

You w i l l be prompted for f i l e names.
Enter a s ing le name followed by a carriage return.
the next name.

You w i l l be prompted for
When you have f in ished, just h i t a carriage return a t the prompt.

Enter the complete filename ==>

Compiling, Linking, and Executing S O L Programs 1 - G

Type a filename, and type carriage return. The LSOL command continues to prompt you for
additional files until you type a carriage return in response to the e n t e r f i l e n a m e prompt.
Once this prompting has ended, LSOL will compile the FORTRAN translation of your SOL
program and invoke the V.4X Linker to create an executable (.ese) image which can be
run on the computer. The LSOL command procedure will signal that linking has ended by
sending the following message to the screen:

*** This run of t h e SOL Linker U t i l i t y is comple t e ***
The following restrictions hold for the external file names:

The linker requires “.obj” files produced by the VAX FORTRAN compiler.
If a FORTRAN routine is needed by your SOL program, you must compile
the FORTRAN to create a “.obj” file. This “.obj” file can now be linked
with your SOL program.
The linker assumes a “.obj” suffix, so it need not, be supplied. For example,
to link “example-l.obj” either of the followiiig are valid file names:

“example-1 .obj” or “example-1”

1)

2)

The linker defaults to the current device and directory. If a different device
or directory is desired, this must be specified in the file name.

The esecutat~le image will be created in the current tlircctory. This image will have
t he same name as the file name passed to tlic LSOL command procediire, except the “.for”
suffix is replaced with a “.exe” suffix. For example, LSOL o p t i m and LSOL 0 p t i m . f o r both
produce an executable image named, “optim.exe”

3)

1.3 EXECUTING A SOL PROGRAM: THE R U N COMMAND

I

Once you have compiled your program using the SOL command and linked it using the

RUN (file name)
where:

LSOL command, the last step is to run your program. Simply t j p x

(file name) is the name of the “.ese” version of your SOI, program, produced hy
the LSOL command. The “.exe” suffix is assumed, so it need not be
supplied. For csample. to execute “test .cxc” yo11 can type either of
the following:

RUN t e s t or RUN t e s t . exe

This command is the VAS RUN command. which is used to csecutc> most programs on
Vr.AS/VI\f S systems.

1.4 SAMPLE SOL LISTING

.4 complete SOL compiler listing has three parts:

1) A source code listing, generated by Icaving thv I, opt ion on.

Compiling, Linkir ig , and E.rccutiny ,501, Programs 1-7

2) A cross-reference listing, generated by leaving the X option on.

A list of error messages outlining where errors have been encountered in your
SOL program.

The source code listing for the main program appears first, followed by the cross-reference
information (if X option selected) for the main program. The main program cross-reference
is followed by a series of source listing/cross-reference pairs, one pair for each subroutine.
The last thing to appear in the compiler listing is the error messages.

On the following pages, a complete SOL compiler listing appears. After the SOL compiler
listing, three discussion sections appear that explain the compiler listing. The italicized
numbers that appear in the listing correspond to the numbered explanations in the sections
that follow:

3)

1.4.1

1.4.2
1.4.3

- Discusses the source listing

- Discusses the cross-reference information

- Discusses the error messages

Compiling, Link ing , and Exrcuting SOL Programs 1--8

SIZIJG A J D OPTIHIZATIOJ LAJGUAGE 1 (SOL) V1.22 2 SOURCE LISTIJG 3 21-JUU-1988 4 10:53:47.88 5 PAGE 1 6
7 SOURCELIJE 8 LIJEt

1
2
3
4
6
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
57
58
59

: PPOGUH Opt-Beam
: !
: ! Determine t h e o p t h i r u m Geometry f o r min veight beam
: !
: DECLARE
:
: EID DECLARE
: ! cons tan ts f o r beam weight ca l cu la t ion .

SUBROUTIJE (Rho-max) = calc-rho(max, depth)

Fs-Allow = 6oooO
Fb-Allov = 1OOOOO
l eng th = 40 ! beam l ength i n inches
load = 100 ! n n i f o m load i n l b s per inch
s t e e l = .3
t -min =.l
mater ia l -v t = 7
cap-width = 3

OPTIIIIZE Beam-Weight
USE

depth = 20 In C.25, 1
cap-thickness = t e i n I n Ct-min, I
veb-thickness = t e i n I n Ct-min, I

: P r i n t 'Beam Depth ', depth : f 5 . 2
: End Opt-Bear

! cons t r a in t s
Rho-b-max .It. Fb-Allov
web-stress . I t . Fs-Allov

EJD USE

ASSEIIBLAGE beam (0 , 'Beam')
SUIIIIARIZE

area
EPD SUHHARIZE

COHPOJEJT top-cap(1, 'Top Cap')

EJD top-cap
COIIPOJEJT base-cap (1 , 'Base Cap')

EJD base-cap
COHPOJEIT veb (1, 'Web '1

EJD veb

a rea = l eng th cap-vidth cap-thickness

a rea = l eng th cap-vidth cap-thickness

a rea = depth veb-thickness l eng th

EJD beam

n-mx = ((load*length)**2)/8
I = (areaQtop,capQbeam*(depth**2))/2
(Jlho-b-max) = calc-rho(H>ax, depth, I)
veb-s t ress = load*len%h/(2*areaOpebQbeam)
Beam-Weight = areaabeam s t e e l
cap-area = areaQtop-capabear + area0base-capQbeam
veb-area = areaavebabeam

E J D OPTIllIZE
P r i n t 'cap a rea I, cap-area : f 5 . 2

P r i n t 'web a rea ', web-area : f 5 . 2
P r i n t 'Web th ickness I, web-thickness : f 5 . 2

a

.

Coinpiliiig, LinX,iny, cc i i r l Rxecwtiiq SOL Programs 1- 9

.

c

?

S I Z I I G A I D OPTIHIZATIOI LAIGUAQE (SOL) V1.22 CROSS BEFEREICE 9 21-JUI-1988 10:53:47.88

+ CROSS REFEREBCE FOR H A 1 1 PROORAH * 10

+ ASSMBLAGE IESTIIG STRUCTURE * 11

BEAH
TOP-CAP
BASE-CAP
WEB

e++ SU?IHARIZATIOI VARIABLES AID EIPRESSIOIS *** 12

S u m m a r i z a t i o n Variable lame L i n e lumbers

AREA 32

*** O p t i m i z a t i o n L i s t i a g *+* 13
OPTIHIZATIOI I A H E : BEAH-EIGHT
DESIGN VARIABLES : DEPTH. CAP-THICKIESS. VEB-THICKIESS
COIISTRAIITS : REO-B-MI. WEB-STRESS

Variable name, Component Iesting Appended

BEAH,UEIGHT
CAP- AREA
CAP-TEICKIESS
CAP-WIDTH
DEPTH
FBJLLOW
FS-ALLOW
I
LEIGTH
LOAD
HATERIAL-UT
H - H A 1
RHO-B-HAX
STEEL
T J I I
WEB-AREA
WEB-STRESS
YEB,THICKIESS

V a r i a b l e s for Assemblage BEAH 15
Variable name, Component Iesting Appended

AREA@ BEAH

Variables for Component TOP-CAP
Variable name, Component Ies t ing Appended

AREAP TOP-CAW BEAM

Variables for Component BASE-CAP
Variable name, Component B e s t i n g Appended

A R E A @ BASE-CAP@ BEAH

V a r i a b l e s f o r Component YEB
Variable name, Component Hesting Appended

A R E A Q WEB@ BEAM

L i n e l u m b e r s 14

49
50 54
21 35 38
16 35 38
20 41 46 47 57
10 25
9 26
46 47
11 35 38 41 45 48
13 43 46
15
45 47
47
13 49
14 21 22
51 56
48
21 41 55

L i n e l u m b e r s

49

L i n e l u m b e r s

35 46 50

L i n e l u m b e r s

38 50

L i n e l u m b e r s

41 48 51

PAGE 2

C'ompiling, Link ing , nnd Executing SOL Programs 1-1 0

S I Z I I G AID OPTIHIZATIOI LAIGUAGE (SOL) V1.22 SOURCE LISTIIG 16 21-JUI-1988 10:53:47.88
L I E : SOURCE L I I E

PAGE 3

60 : SUBROUTIIE (8ho-max) = calc,rho(max, d e p t h , I)
61 : Rho-lax = (MI depth) / (2 I)
62 : EID calc-rho
6 3 :

S I Z I I G U D OPTIHIZATIOI LAIGUAGE (SOL) V1.22 CMSS BEFEREICE 21-JUI-1988 10:53:47.88

*** CROSS REFEREICE FOR SUBROUTIIE *** CUC-REO 17
Variable name, Component fas t ing Appended L i n e lumbers

DEPTE
I
HAX
RHO-HA1

60 61
60 61
60 61
61

S I Z I I G AID OPTIIIZATIOI LAIGUAGE (SOL) V1.22 SOURCE LISTIIG 21-JUI-1988 10:53:47.88
L I I E t SOURCE L I I E

PAGE 4

PAGE 5

0 2 ERRORS FOUID. 18
1 0 WARIIIGS ISSUED.

S I Z I I G AID OPTIHIZATIOI LAIGUAGE (SOL) V1.22 ERROR HESSAGES I!) 21-JUU-1988 10:53:47.88 PAGE 6
L I I E t SOURCE L I I E

47 : (Rho-b-max) = calc-rho(Haax, depth, I)

60 : SUBROUTIIE (Rho-mar) = calc-rho(max, d e p t h , I)
*** ERROR - SUBROUTIIE ARCWEIT IUHBER IOT HATCH DECLARATIOH

*** ERROR SUBROUTIIE ARGUHEHT HUHBER BOT HATCH DECLARATIOI

Compiling, Linkiiig, a n d Executing SOL Programs 1-11

1.4.1 THE SOURCE LISTING

.

This section explains the format of the compiler source listing in detail. The italicized
numbers in the explanations below refer to the italicized numbers that appear in the sample
listing from t hc previous pages.

Each pagc or t t i c listing begins with a titlo linc, consisting of eight, clc.incnts:

1 A SOL header message.

2
3

4
5

6
7 A line number column.

8 A source line column.

The version number of the SOL compiler.

A subtitle that describes which part of the listing is found on this page. In
the case of the source listing the words, “SOURCE LISTING,” appear.

?‘he date the listing was created.

The time the listing was created.
The page number for the complete listing.

The compiler listing begins with the main program source listing, as on page one. The
lines from your SOL program appear. and are nunibercd for referencing. Tile line numbers
that appear in the cross-reference and error messages, rcfer to these lint. numbers in the
source listing.

Following the main program source listing, the cross-reference for the main program (if
the cross-reference option was chosen) appears. Next, the soiirce listing for the subroutine
implementation appears, 16on page 3 of the listing. The subroutine source listing is followed
by its own cross-reference. If other subroutines were used, a source listing/cross-reference
pair for every subsequent subroutine implementation would also appear.

The last page of the source listing will be blank if no errors occur, or will contain
information on the number of errors and the number of warnings 18 that appeared followed
by a listing of the error messages 19.

1.4.2 THE CROSS-REFERENCE LISTING

The cross-reference listing follows the source listing. The cross-reference will begin on a
ncw page, and will he indicated by the words, ..CROSS REFERENCE.“ i i i the page title as
i l l 9.

‘l‘lie cross-r(~f~~i.(~iict~ listing consists of the following:

IO A title indicating that the cross-rcfercnce is for the main program. In the case
of‘srihroutines, a different title is used to indicate thc namc of the subroutine,
as in the case of 17.
.An ASSEMBLAGE section appears, which illustrates components that make up
the assemblage. If no components appear, this section is left blank.
A list of the ASSEMBLAGE summarization variables and summarization expres-
sion variables appears, along with the line number where they were declared.
An optimization section appears, which lists the objective function, design
variables and constraints for each optirnizc staicment in your SOL program.

11

12

13

Compiling, Linking. and Executing SOL Programs 1-19

14 A variable listing appears, which lists the variables and the lines where they
were used. (ASSEMBLAGE and COMPONENT variables are listed separately, see
15 below).
A variable listing for the assemblage and associated componcnts appears. 15

Following the cross-reference of the main program, the source listing for the subroutine
appears, followed by its own cross-reference section as on pages 3 - 4 of the listing. Source
listing/cross-refcrcllcc pairs continue to alternate for each siibscqiimt, sii1,routine.

If the cross-rvfcwticc option is not selected, only a source listiiig will i i I) j) c a r in the listing.
Also, if the listing option is not selected: the cross-reference option defaults to “not selected,”
and no cross-reference will be produced.

1.4.3 THE ERROR LISTIXG

The next to last page of the source listing 18 gives the number of error and warning
messages that were issued, and is followed by a list of the messages in an error message
section. The error message section is clearly delimited as i t begins on a new page, and the
words “ERROR 1IESSAGES” appears in the page header 19. The line number, line, and
message issued for each error follow. The “up-arrow” mark before the issuccl message points
to the general location of the error in the line.

Compiling. Link ing , nrrd L‘.rwriiing SOL Programs 1-13

Chapter 2

.
This chapter is divided into the following sections:

2.1
2.2

2.3
2.4

- Presents an overview of SOL, and illustrates tlie structurc of a SOL program.

- Discusses SOL’S lexical elements - the character set, special symbols, reserved

- Explains how to document a SOL program using comments.
- Explains the use of SOL’S continuation lines.

words, identifiers and numbers.

‘3.1 A N OVERVIEIV OF SOL

SOL is a high-level, special-purpose language that has been developed for use under the

1) Conventional features: SOL has many features of “conventional’) lan-
p a g e s such as FORTRAN or Pascal. SOL offers variables; math-operators;
built-in mathematical functions; program control statements for loops and
if/tlicn/elsc logical branching statements; subroutines; and some PRINT state-
Iiicrits to allow the output of values.

Optimization features: One of SOL’S purposes is to make the computer
implementation of a numerical optimization problem as simple and error-
free as possible. There should be no confusion; SOL is not intended as a
language for the development of numerical met hods of mathematical opti-
mization. Rather, SOL’S purpose is to provide a language in which to write
code which applies existing methods of numerical optimization to solve an
optimization problem. One writes SOL code to apply optimization. At
present, the methods of numerical optimization implemented in the ADSt
optimization routine are available for use within SOL programs. In terms of
its optimization capability, SOL can be considered as a sophisticated shell
around an optimization routine.

VAX/VhlS operating system. Four basic features describe SOL:

2)

f .4DS - rl FORTRAA‘ Program for rlutomatctl Upsign Syrilhesis - I’ersion 1.10, NASA
Contractor Report 177985, Grant nT.AG1-5G7, 1955 by G.N. V’ariclcrplaats

Introduction to SOL 2-1

Sizing Features: SOL includes features to facilitate a type of engineering
systems modeling herein referred to as sizing. In this manual, sizing is de-
fined as the modeling of a system as the simple sum of its parts with respect
to some special summarization variables. For example, an airplane can be
modeled and sized for weight; we model the major parts of the airplane, its
systems and structural components, along with the interaction between the
parts. The model is constructed so that the weight of the entire airplane can
be determined b y summing the weight of its parts, the systems and structural
weights. Likewise the weight of any part of the airplane can be determined
by summing its parts. In this case, “weight” is considered a summariza-
tion variable. SOL aids the modeling of such “assemblages;” by allowing
the user to create such models, and automatically computing the necessary
summat ions.

3)

4) FORTRAN Interface: SOL provides a FORTRAN block feature, which
allows one to write FORTRAN code within a SOL program, or to interface with
an existing FORTRAN code.

0 Conventional SOL features combine with its specialized optimization and
sizing capabilities to create programs.

0 SOL’S compiler also provides an important error-checking capability. The
compiler not only checks for syntax errors, but also uses knowledge about
sizing and optimization to give specialized error messages.
As a convention in this manual, a description of the correct use of a SOL
feature is followed by a list of restrictions on usage which defines the error-
checking of the compiler.

0

The following sections introduce the main elements of SOL:

Data Types . 2.1.1 1)
2) Variable Initialization . 2.1.2

Exccutable Staternents 2.1.3 3)
Suhroiitines . 2.1.4 4)

5) Structure of a SOL Program 2.1.5

3.1.1 DATA TYPES

Every SOL variable has a data type. A data type classifies a variable, determining both
the range of valiics the variable can have, and the operations which can be performed on it.

SOL provides only three kinds of predefined types:

-- REAL (S nytes long)

- INTEGER (-1 Bytes 101lg)

- LOGICAL

0

0

SOL does SOT allow user-defined types.

SOL does SOT provide structured types s i i c h as arrays or rcwxds.

.

Introduction to SOL 2-2

0 Chapter 3 describes SOL data types in greater detail.
SOL identifiers are given a data type in two wa,ys:

a

1) Explicit: Explicit type declarations can appear in the declaration sections of
a SOL program, or in a subroutine formal parameter list. Explicit
declarations give variables a type.

Implicit: If a SOL identifier is not explicitly declared, the variable is implicitly
declared as type REAL when it is initialized.

2)

Chapter 5 offers an in depth discussion of type declarations.

2.1.2 VARIABLE INITIALIZATION

SOL distinguishes between initializing a variable and declaring a variable.

0

0

0

A variable is declared when it is associated with a data type.
A variable is initialized when it first receives a value.

SOL requires every variable to be initialized before you access its value.

The most common means of accessing a variable's value is using the variable on the
right-hand side of an assignment statement. Variables can be initialized in six ways:

most variables are initialized by appearing on the left-hand side of an assign-
ment statement. (See Chapter 6, section 6.1)
subroutine independent parameters are initialized for use within the sub-
routine when the subroutine is called and passcd values. (See Chapter 9,
sections 9 2-9.3)
optimization design variables are initialized when they are bounded (given a
range of possible values) in the USE section of an optimize statement. (See
Chapter S)
summarization variables of composite COMPONENTS are implicitly initialized
at the end of a COMPONENT. (See Chapter 7)
Iteration variables are initialized in the ITERATE section of a COMPONENT
statement (See Chapter 7 , section 7.1.3)
variables are initialized when they are returned as the dependent variables
from a subroutine call. (See Chapter 6, section 6.7, or Chapter 9)

Variable initialization takes place in the statement section of a SOL program the first time
a variable gets a value. Detailed discussions of each variable initialization method can be
found in the sections named above.

variable can be accessed. Each of the following is a block in SOL:

1)

2)

3)

4

5)

6)

The block in which a variable is initialized determines the variable's scope, where the

1) T h e main program

2) S u 11 routines

3) IF/?'I1EN/ELSE statcmcrits

4) ASSEMBLAGES and related COMPONENTS

Block: The chief characteristic of a block is that a variable can be iiiitialized inside a
block, and remain uninitialized outside it. Some blocks can be nested inside
each other.

Scope: The scope of a variable determines where the variable can be accessed, and
the rules which decide the scope of the variable are called “scope rules.”
Scope rules follow from SOL’S stringent error checking. The scope rules are
designed to insure that variables are always iiiitialized heforv they arc iisctl.

For instance, consider thc IF/THEN/ELSE statcirwit. One caniiot be certaiii
that the statements in the THEN or the ELSE portion of an IF statement
will be executed. Statements in the THEN part are executed only when the
condition is true, and statements in the ELSE part are executed only when the
condition is false. Therefore, it is uncertain whether a variable initialization
which only appears in either the THEN or ELSE portion of an IF statement,
will occur. SOL will not allow a variable to be used unless its initialization is
certain. Hence, the scope rules require that only a local variable be initialized
when it is not certain that the initialization will actually take place.

In general, the scope of a variable includes the block where the variable was
initialized, and any blocks nested inside the initializing block. Outside of
this scope, the variable is uninitialized and cannot be accessed.

Chapter 11 offers a detailed discussion of scope rules, and the scope rules for each block

0

are discussed when the block is described.

2.1.3 EXECtiTABLE S‘I’hTEhIENTS

Statements include conditional branching, loops, assignments, optimizations, ASSEM-
BLAGE descriptions, print statements, subroutine calls, and FORTRAN blocks. The statement
section ends when the main program or subroutine ends. The following table gives a repre-
sentitive list of the SOL statements and their use:

Introduction to SOL 2-4

.

Table 2-1

Calc rila tion Stat emc~i t s Description

Assignment
Expression

Control S t a temen ts

Conditional DO loop
Iterative DO loop
IF/THEN/ELSE
Subroutine call

Declaration Statements

Subroutinc declaration
Variable declaration

Description Statements

ASSEMBLAGE or COMPONENT
OPTIMIZE

hfiscellaneous Statements

FORTRAN block
?INCLUDE
Macro call
Macro definition

O u t p u t Statements

Assigns a value to a variable.
Combines variables, operators, and/or functions to give values.
Expressions can only appear as part of other statements.

Repeats statements while a condition is TRUE.
Repea.ts statements a specified number of times.
Branches based on a logical decision.
Calls a SOL subroutine.

Declares a subroutine and its pa.ramcatcrs.
Declares a variables type.

Describes a sizing model.
Describes an optimization problem.

Incorporates FORTRAN code into a SOL program.
Include a file into the SOL program.
Use a macro abbreviation.
Define a macros abbreviation.

PRINT
SUMMARIZE

Output a value or optimization result
Output individual component values for a sizing model

SOL statements are fully described in Chapter 6.

2.1.4 SUBROUTIKES

SOL allows yoii to group declarations and executable statements into siibroutincs. Sub-
routines are a convenient way to organize a program, because you can isolate individual
tasks a program must accomplish by coding each task as a subroutine.

0 Subroutines must be declared in the declaration section (Chapter 5) of the
niain program, before they are used. The declaration consists of the subrou-
tine name, and the number and types of parameters.

Subroutine implementations, i i i wliich t h r x actual code for tfic subroutine is
givcn. appear after the niain program’s body.

0

Introduciion to SOL 2-5

0 SOL subroutines can call each other, but recursion is not allowed; SOL
subroutines cannot call themselves directly or indirectly.

Subroutines can declare local variables, but not local subroutines.

SOL has no global variables; SOL subroutines cannot access variables initial-
ized in the main program, except through explicit parameter-passing.

0

0

0

0

0

Chapter 9 describes su broutincs more fully.

Chapter 6. section 6:7 provides details on subroutine ca.lls.

Chapter 5 describes subroutine declaration.

A SOL program has the following I :,sua1 structure:

Program Header
Optional Declarat ion Sect ion
Statement Sect ion

Optional Subroutine Implementation Sect ion
End Program Foo te r '

The declaration and subroutine implementation sections are optional, and can be left
out of your SOL programs under certain conditions. All the otlier scctions iiiust appear.

The following sample SOL program illustrates the structure of SOL programs in general.
In the example, the structures outlined above have been noted by SOL comments, which
follow the symbol, !.

PROGRAM example ! t h i s i s an example program header . Spec ia l
! SOL words a r e shown i n uppercase l e t t e r s

DECLARE ! The dec la ra t ion s e c t i o n , appears i n t h i s
INTEGER a-var ! program. A va r i ab le is dec lared t o be
SUBROUTINE (y) = t e s t (x) ! of type INTEGER and a subrout ine i s dec lared

END DECLARE

a-var = 4 ! The statement s ec t ion , and here i s
(a-var) = t e s t (a-var) ~ ! a subrout ine c a l l

END example ! The end program foo te r

SUBROUTINE (y) = t e s t (x) ! t h e start of t h e subrout ine
! implementation sec t ion , only one

IF x .eq. 4 THEN ! subrout ine is implemented i n t h i s

EliDIF
p r i n t 'x equals 4 ' ! sample program

y = x + l
END t e s t ! end of subrout ine implementation

Introduction to SOL 2-6

Thus, to write a SOL program:

t

Give the program header, consisting of thc word PROGRAM, followed by the
name of your program.

Write a declaration section, delimited by the r c w r v c d words DECLARE and
END DECLARE, if desired.

Supply the SOL statements that make up the statement scction. Iiidicat,e
the end of the statement section with the end program footer, which consists
of the word END, followed by your program name.

If subroutines have been declared, supply their implementations in the sub-
routine implementation section.

Blank lines and comment lines. lines that consist of nothing or a comment respectively,
can appear almost anywhere in a SOL program including before the program header and
after the end of the main program or subroutine implementation.

In the chapters of this manual, specific details are given about the declaration section,
SOL statements and statement scction, subroutines, arid the rclationship between thcw
parts. But, all SOL programs, no matter how complicated, will still have tlie basic structure
outlined ahove.

1)

2)

3)

4)

2.2 LEXICAL ELEMENTS

A SOL program is composed of lexical elements. Lexical elements consist of a single
character (individual symbols like parent.hesis or mathematical operators), or a collection of
characters (words that have a special meaning in SOL). Each character must be a member
of SOL’S character set, described in section 2.2.1.

0 Some characters act as special symbols i n SOL, representing statement delim-
iters, operators, or elements of the language syntax. These special symbols
are presented in section 2.2.2.
Some words in SOL are reserycd for the names of SOL language constructs,
statements, and operations. The SOL reserved words are listed in section
2.2.3.

Some words in SOL arc idcntificrs that arc’ crcatcd by thc user to name
variables. subroutines and so forth. Section 2.2.1 c~splains how identifiers are
formed.

e

e

2.2 .1 CHARACTER SET

SOL uses the cstended ASCII character set used hy \‘AX I’ascal. The SOL compiler
assumes that the liorizontal tab will be represented by the ASCII character numbered by
decimal number 9.

The SOL compiler does not distinguish between uppercase and lowercase; for example
the word OPTIMIZE has the same meaning when written in any of the following ways:

OPTIMIZE
optimize

OpTImiZe

2.2.2 SPECIAL SYMBOLS

SOL utilizes a number of special symbols which are listed in the following table, along
with a short English description of their meaning in SOL. For symbols whicli arc composed
of niore than a single character, the characters must be contiguous and cannot be separated
by spaces.

Table 2-2: Special Symbols

Symbol Symbol Description

*
**
+

.NOT.
A S D .
.OR.
.TRU E.
.FALSE
.LT.
.LE.
.EQ.
.?;E.
.GE.
.GT.

comment delimiter symbol
percentage symbol
open parenthesis, often delimits arithmetic expressions
close parenthesis, often delimits arithmetic expressions
multiplication
esponentiat ion
addition
comnia
subtraction
division
beginning delimiter of FORTRAN hlocks i n SOL programs
quote symbol for SOL strings
ending delimiter of F O R T R A N blochz i n SOL programs
colon
assignment symbol
continuation syml>ol for overlong lines
macro delimiter, indicates where a macro hcgiiis
macro replacement test opening delimiter
macro replacement text closing delimiter
optimization design variable h oil n cl s opening deli ni i t e r
Optimization design variable bounds closing delimitcr
logical operator. boolean negation
logical operator, boolean conjunct ion
logical operator. boolean disjunction
boolean true
boolean false
relational operator
relational operator
relational operator
relational operator
relational operator
relational operator

“less than“
“less than or equal to“
“equalr’‘
“not equal to”
“greater t lian or q u a l to”
‘*great e r t h an”

Introduction to SOL 2-8

2.3 .3 RESERVED WORDS

In SOL, certain words form the basic SOL language, and are predefined with special
meanings that cannot be changed. These words are reserved for the names of statements,
data types, and operators. Rescrved words can appear in uppercase or lowercase, but the
following t a l h shows SOI, rcscrvctl words in all uppcrcasv Icl,tcrs.

‘l’tihl(* 2 2: Slarlclartl SOL 1~1~sc:rvc~cl Wortls

ABS
ACTIVE
ASSEMBLAGE
AT
ATAN
BFGS
BOUNDS
COMP
COMPONENT
CONSTRAINTS
CONVEX
cos
CRITERIA
CUBIC
DECLARE
DESIGN

DFP
DIRECTIONS
DO
ELSE
END
ENDDO
ENDIF
EVERY
EVERYTHING
EXP
EXTERIOR
FEASIBLE
FIND
FLETCHER
GOLDEN
HYPERSPHERES

IF
IN
INITIALLY
INSCRIBED
INT
INTEGER
INTERPOLATION
INTERPOLATION/EXTRAPOLATION
ITERATE
ITERATION
LAGRANGE
LINEAR
LOG
LOGICAL
MOD IF I ED
MULTIPLIER

NONE
NORMALIZE
NOTHING
OBJECTIVE
OPTIMIZE
OPTIMIZER
OPTIONS
PENALTY
PRINT
PROGRAM
QUADRATIC
REAL
REEVES
SEARCH
SECTION
SEQUENTIAL

SIN
SQRT
STEP
STRATEGY
SUBROUTINE
SUMMARIZE
TAB
TAN
TERMINAT1 nnJ
THEN
USE
VARIABLES
VIOLATED
WHEN

Reserved words can only be used in the contexts for which they are defined. Reserved
~vortls cannot be redefined for use as identifiers. (see section 2.2.4 for description of identifiers)

2.3 .-4 I D ESTIFI ERS

SOL identifiers are used to name variables, ASSEMBLAGES or COMPONENTS, a SOL pro-
gram, SOL macros. or a SOL subroutine. IIowver. there is a standard form with which all
identifiers must conform to be considercd legal:

1)

2)

All SOL ideritifiers must begin wit11 a letter

After the starting letter, the rest o f tlir itl(vitilic~r can he a combination of
the following elements:

let tcss

digits(0.. .9)
underscores(-).

SOL, is not letter case sensitive, so the letters can be upprrcase, lowercase,
or soiiie combination of both.

Rc*sc~vecl words cannot he usrd as i(1c~ritific~i.s.

Identifiers AIC‘ST be strictly Icss than 2S c.liarac.tcm in length.

3)

4)
5)

Introduction to SOL 2-9

Some illustrations of legal identifiers and illegal identifiers follow:

LEGAL
ILLEGAL

- birthday, OUT-tOLUncH, a234-5k6, First-try, tHe-3rd-value
- 2Jate, 12hours, aS$time, program, a.answer, ?wrong0

A DVA h’ C E D h4 AT E RIAL :

SOL also has extended identifiers. These are only used to access variables initialized
inside of an ASSEMBLAGE. Extended identifiers consist of a list of identifiers, separated by the
J2 symbol. Several examples of extended identifiers follow:

weightGshaft alarge-testQmy-will golfQnoon&an-be@fun

0

0

0

No blanks can appear between the symbol, @, and t.he adjaccnt identifiers.

Extended identifiers MUST be less than 121 characters in total length.

See Chapter 7 for more information on ASSEMBLAGES and exknded identifiers.

SOL numbers can be positive or negative numbers that may include decimal points or
be expressed as powers of 10 through the use of scientific notat,ion. In this notation, the
letter “E” stands for “times 10 to the power of.” Some examples of SOL’S representation of
integers, reals and scientific notation are given follow:

integer = 12, 0. +2, -4, 1000000, 66. 29
real = 12, 0, 0.0, +0.123. -3.4.56, .’i2

scientific notation = 12e2 (equals “12 timcs 10 to tlie second” or 1200)
+2e-3 (equals “2 times 10 to tlie -3rd” or .002)
1.OE06 (equals ”1 times 10 to t h c sixth” or 1000000)

0

0

0

INTEGER values range from -2.147.453,638 t 1 1 1 origli 2,147,4S:1,648.

REAL values range from 1.7e38 through 0.293e-3S.

Leading zeros are allowed hut riot requirctl.

not 100.000.
scientific notation.

0 Commas are not allowed. Thus. onc hundred tliousand is Lvritten as 100000, v
Unless otherwise specified, SOI, \vi11 output numbers using

Introduction to SOL r?--tO

2.3 COMMENTS

It is a good idea to comment your SOL programs, and SOL allows one to use comments
freely. You can type anything you want in a comment. The SOL compiler ignores commcmts
cx-miplc*tcly, so 4 l l i ~ t vvc11 res(nw1 words can appear in it cwl i i i i i cv i t . ‘ I ’ l i c a SOI, compilcr will
riot, do error c*Ii(diirig in j o u r COITI I I~CI I~S . Thcrcn a r c olily two riil(*s for c - o n i r i i c x i i t s :

1)
2)

(lortirnents start with an exclarnatiori p o i i i t , c:.g “!”
Comments end at the end of the line.

So, once you start a comment on a line, the rest of the liiic is treated as a comment. Here
are some examples of comments:

! this is a comment
1

I !!!!!!!!!!!!!!!!!!! a comment toooooooooooooo

I c a 11 t y pc a n y t h i ng , even 1 2 kl f [8 -& *) Y) # () J { (’ h l I< M {) (# -) J F hl ”

In a SOL program, comments should either appear alone on a line, or after a SOL
statement. You cannot put a comment before a SOL statement on a single line, because the
entire line will be treated as a comment, and the SOL statement will be ignored just like
any other text inside a comment. Some examples follow:

a=6 ! comments are effective after statements
! and here is a comment alone on a line
! calculate the area area=width * height

The last esample ahove is fine for a comment, but if the text “arca=witlth * height” was
meant to be a SOL assignment statemelit, then there is an error, bccause it will be ignored
as part of a commcnt.

As a final caution, some keyboards have a tlouhle-bar symbol, that looks a little bit like
an exclamation point. You cannot use the double-bar symbol as a comment symbol. If you
do, your SOL program will be incorrect.

2.4 CONTISLTATION LIKES

SOL is not entirely free-format, as carriage returns are used as statement separators.
There are times when you will not have enough space on your terminal’s screen to con-
veniently finish typing a SOL statement. You would like to continue typing on the next
line. but in your case SOL does not allow a carriage return to appear in the middle of the
statement. To accomodate this situation, SOT, offers a continuation symbol, SC.

The continuation symbol. &, should be read as ‘‘continued from the prcvious line.” If
you place the symhol in colunin one of a linc of test, Sol , will treat thc text as if you had
typcd i t 011 the previous linc. An

Legal

esaniple follows:

2)

illcgaf

a = (4 * 3) /
((c ** 4) + 2)

Idroduction to SOL 2-11

There are a few general rules to remember when using the continuation symbol:

1) The continuation symbol, &, MUST be placed i n column 1 !! If it is not in
column 1, an error will result.

There are cases when SOL requires a carriage return after a line. If a contin-
uation symbol appears in column one of the next line, an error will result.

You can string together as many lines as desired, using the continuation
S?;Illl>Ol, &.
SOL slrings, such as ' t h i s is a string' CANNOT b c ~ broken over two
lines with the continuation symbol.
SOL lines can be at most 120 characters long.

2)

3)

4 1

5 1
Information about the use of the & symbol in a specific case is sprinkled throughout the

manual.

.

1

Introduction to SOL 2-12

Chapter 3
Data Types

c

.
Every SOL variable has a data type. A data type classifies a variable, (Ictcrniining both

tlie range of values the variable can have and the operations wliicli ci in be performed 011

it. Furthermore, variables can he combined with operations (e.g. a + b/2 - c) to form
erpressions. SOL expressions calculate a value with a certain data type. This chapter’s focus
is the data types; the discussion of SOL expressions and their types is left to Chapter 4.

0

0

0

SOL supplies three predefined types: INTEGER, LOGICAL, and REAL.
No other types, such as arrays, records or user-defined types are available.

An identifier is declared to be of a certain type in tlie declaration section (see
Chapter 5) of the main program or a subroutine.

If no explicit declaration is made, identifiers default to be type REAL. 0

‘This chapter describes the range of possible values and the legal operat ions for the three
predefined types. INTEGER, LOGICAL, and REAL. In addition, the SOL compiler provides some
type checking capability which is also discussed. For example, it is an cuor to assign an
INTEGER value to a LOGICAL variable.
This chapter is dividcd into four sections:

3.1 - Discusses the INTEGER type.

3.2 - Discusses the LOGICAL t,ype.

3.3 - Discusses the REAL type.
3.4 - Discusses type checking.

3.1 THE INTEGER TYPE

The INTEGER type allows positive and ncgativc integcr \.aliics. A variable must be de-
claIed to be of type INTEGER i n the declaration section of tlw main program or subroutine
(SCC Chapter 5) .

0 INTEGER \ d u e s can range from -2 ,1Ll i ,~ lS :~ ,6 IS t hroiigh 3,147,483,647 inclu-
sivc.

An INTEGER consists of a scrics of contigiioiis d~c i~ i i a l digits; 110 commas 01’

decinial points are allowed.

Negative INTEGER numbers are esprcssecl l,y placing a niinus symbol (-) in
front of the number.

0

0

Data Types 3-1

3.2

3.3

0 The use of negative INTEGERs in complicated expressions may not give the
results you expect, see Chapter 4, section 4.3.1 for details.
The legal operations on INTEGERS follow: 0

+, -, *, /, **, .eq., . g t . , .ge . , . I t . , .le., .ne.

The following are valid integers in SOL:

THE LOGICAL TYPE

The LOGICAL type, also known as the boolean type, represents the logical conditions of
t rue and false. Variables are declared to be of type LOGICAL in the declaration section of the
main program or subroutine (See Chapter 5) .

0

0

0

0

The symbol, . t rue . , represents a logically true condition.

The symbol, . f a l se . , represents a logically false condition.

.A LOGICAL variable can have only one of the two values, . t rue . or .false.

Legal operat ions on logical values follow:

.and., .or., . n o t .

0 Relational operators, such as .GT. (>), produce logical rcsiilts. Chapter 4,
section 4.2 discusses logical and relational operators.

THE REAL T Y P E

The REAL type denotes positive or negative real values. \'ariables are declared to be of
type REAL in the declaration section of the main program or suhroutine (See Chapter 5) .

0

0

0

0

A11 REAL values are double-precision, (eight bytes long).

REAL values are allowed to range from f1.7e3S through f 0.29e-3S inclusive.
Variables are assumed to he REAL unless clcclaretl otherwise.

Xcgative REAL numbers are expressed hy placing a iiiiriiis syinbol (-) in front
of the number.
The use of ricga tivc numbers in coriiplicatcd cxprcssions sometimes will not
protliice tlie results you expect, See Chaptcr 1 . section 1.3.1.

Lcgal opa-ations on REAL variables follow:

0

0

+, -, *, /, **, . eq . , . g t . , .ge . , . ~ t . , .le., . ne .

Data Types 3-2

REAL numbers can be expressed with either of the following notations:

Decimal notation: Use the set of decimal digits and an optional decimal
point. Leading zeros are ignored.

Scientific notation: Some numbers cannot be conveniently represented
with decimal notation. Tlic partas of a REAL niinihcr writttn with this not r7 .A,’ ion
a w :

1)

2)

-_

. _

- an INTEGER exponent.

a REAL number or INTEGER,

an upper-case or lower-case “e,”

The letter “e” stands for “times ten to the power of.”

The following are valid REAL numbers in scientific notation, representing the number 237:

Table 3-1:

Scientific Notation

23 7e0
2.37e2
0.000237e+6
2370e- 1
2 3 7 4

English Description of Meaning

237 times 10 to the 0 power.
2.37 times 10 to the second power.
.000237 times 10 to the sixth power.
2370 times 10 to the negative first power.
.237 times 10 to the third power.

The following are valid REAL numbers in decimal notation:

6: 6.0, 500, 006. 56.S, .S9, 0.5312

3.1 TYPE CHECKISG

SOL offers two kinds of type checking:

Assignment Compatibility rules: Assignment compatibility rilles deter-
mine the types of data allowed when giving ~.alues to a variable. For instance,
can a LOGICAL variable be given an INTEGER valuc?
Operator Compatibility rules: Operator connpatibility rules determine
what operations are allowed on variables of a certain type. Vor instance, can
two LOGICAL variables be multiplied together:’

1)

2)

This section is divided into two sections:

3.4.1 - Discusses assignment compatibility rules

3.4.2 - Dixusses opcrator compatibility r i i lw

Data Types 3-.3

3.4.1 ASSIGNMENT COMPATIBILITY RULES

Assignment compatibility rules apply when giving values to variables, either by assign-
ment or by a subroutine parameter pass. The rules restrict the types of data allowed, as
detailed in the following sections:

3.4.1.1 Compatibility rules for regular assignments.

3.4.1.2 Compatibility rules for subroutine parameter passing during subroutine calls.

3.4.1. I Compatibility Rules for Regular Assignment

Compatibili ty rules for assignment apply when variables are given a value:

by assignment statement (Chapter 6, section 6.1);
when used as optimization design variables (Chapter 8, section 8.1);
or as iteration variables of an ASSEMBLAGE or COMPONENT (Chapter 7, section

The following table shows the rules of assignment compatibility. The left, column gives the
type of the variable and the right column gives the types which are assignment compatible,
Table 3-3: Assignment Compatibility Rules

7.3).

Type of Variable Assignment Compatilile Type(s)

I NTEG ER
REAL
LOGICAL

INTEGER, REAL
INTEGER, REAL
LOGICAL

Assignments between inco~npatible types are not allowed and result in a
compile-time error message.
.An INTEGER variable is assigned the h n c n t e d REAL: for instance, if an INTE-
G E R variable is assigned the REAL number, 3.99999, tlie intcyybr variable will
receive the value. 3.

3.4.1.2 Subroutine Parameter Passing .Assignment Compatibilit-y Rules

The following table shows assignment compatibility rules for the parameter passing dur-
ing subroutine calls. The left side of the table gives the type of pnrametc>r, and the right
column lists the types which are assignment compatible.

Table 3-3: Assignment Compatibility for Subroutine Calls

L

Type of Parameter Assignment Compafiblc Typc(s)

INTEGER
REAL
LOGICAL

INTEGER
REAL
LOGICAL

0

0

Assignments between incompatible types arc‘ not allowcd.

Compatibility rules for parameter passing arc strict. The variable passed
must have the same type as the parameter.
Further details on subroutine parameters are found in Chapt,er 5, section 5.2,
Chapter 6, section 6.7, and in Chapter 9, section 9.2.

a

3.4.2 OPERATOR COAIPATIBILITY RULES

Operator compatibility rules define which operations are allowed on variables of each
type. The legal operators for each data type have already been given, and the results are
summarized in the following table. The left side of the table lists the type, and the right
column displays the legal operations for that type.

Table 3-4:

INTEGER
REAL
LOGICAL

Legal Operations

+. -, *, /, **, q., .gt., .gc’., .It., .IC.. .lie. +, -, *, /, **, .eq., .gt., .gc.. .It., . I C . , .lie.

.and., .or., .not.

0 Note that INTEGER and REAL types share the same operations. As discussed
in Chapter 4, REALs and INTEGERS can be mised in expwssions, with the
resulting value always being of type REAL.

Chapter 4 provides a more detailed discusion of this topic.

Chapter 10 lists predefined functions and tthcir assignment compatibility
rulcs.

0

0

Data Types 3-5

- - . * . . _ , . . - . a , -

Chapter 4
Expressions

A SOL expression consists of variables or constants combined with operators (e.g. a +
b/2 + 32); the expression calculates a value of a certain data type. This chapter’s focus is
on expressions; a discussion on data types appears in Chapter 3.

SOL has two kinds of expressions:

1)

2)

Arithmetic expressions which calculate INTEGER or REAL values.

LOGICAL (boolean) expressions which calcdate LOGICAL values.

A SOL expression is one of the following:

a single variable
a single constant

a single predefined funct ion call

a collection of variables and/or constants and/or prewclared functlm calls,
all combined with operators.

The operators used to form SOL expressions are the arithmetic, relational,
and LOGICAL operators, all of which are explained in the sections that follow.

The data type of the expression is determined by the data types of the
operators or operands as described in the sections that follow.

The predeclared functions (See chapter 10 for more details on predeclared
functions) are:

-ABS, ATAN, COS, EXP, INT, LOG, SIN, SQRT, TAN
Expressions cannot be parameters to subroutines.

Espressions extending over more than a singlc liuc in SOL must use the
contiiiuat ion symbol, &, See Chap tc~ 2, scction 2.4 for dctails.

?‘his chapter is di\.idcd into two sections:

4.1

4.2
4.3

- Discusses arithmetic expressions, descrihing their syntax and action.

- Discusses LOGICAL expressions. descrihiiig their syntax and action.

- Discusses the precedence rules that determine the order in which operators
are evaluated.

Expressions 4-1

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions calculate REAL or INTEGER values.

0 To form an arithmetic expression, combine numeric data (constants, INTEGER,
or REAL variables) with one or more arithmetic operators

The use of parentheses in expressions is outlined in section 4.3.3 of this
chapter.

0

The following table lists the arithmetic operators (Also see Chapter 3, section 3.4.2):
Table 4-1:

Operator Example

+
+
-
-
*
**
/

a + b
+a
a - b

a * b
a ** b
a / b

-a

Result

The sum of a and b.
The positive value of a.
Subtract b from a.
The negative value of a.
The product of a and b.
a raised to the power of b.
a divided by b.

Although the previous examples show no more than two operands, there is no limit. The
following details are also important:

1)
2)

Negative exponents must be enclosed in parentheses. E.g. a**(-b)
Arithmetic operations cannot be applied to LOGICAL values.

INTEGER division is truncated, not rounded.
variables, c and d. If c=9 and d=8, then d/c = 0, not 1.

E.g Consider two INTEGER 3)

The value calculated by an arithmetic expression has a data type, which is
determined by the types of the operands and operators:

If all operands are of type INTEGER, and no division operators
appear, the resulting value will be of type INTEGER. note: the
predeclared functions can also be operands; predeclared functions
return either INTEGER or REAL values (see Chapter 10).

If any operands are REAL or if a division operator appears, the
resulting value will be of type REAL.

4)

0

0

5) Operator precedence rules are given in Chapter 4, section 4.3

4.2 LOGICAL EXPRESSIONS

LOGICAL expressions calculate LOGICAL values.

0 To form a LOGICAL expression, combine LOGICAL data terms (e.g. LOGICAL
constants or variables) with one or more LOGICAL operators.

Expressions 4-2

0 Relational operators test the relationship between two arithmetic expressions
and return a LOGICAL value as a result. If the relationship holds, the value
.TRUE. is returned, otherwise the value .FALSE. is returned. Thus, rela-
tional operators can be used to form LOGICAL data terms which can appear
in a LOGICAL expression.

The following table lists the relational operators.

Table 4-2:

Operator Example

. eq . a .eq. b

.gt . a .g t . b

. ge . a .ge. b

. l e . a . l e . b
:It. a .It. b
.ne. a .ne. b

Result

. t rue. IF a is equal to b

. t rue. IF a is greater than b

. t rue. IF a is greater than or equal to b

. t rue . IF a is less than or equal to b

. t rue. IF a is less than b

. t rue . IF a is not equal to b

0 Relational operators are indivisible units, no spaces or miscellaneous charac-
ters can appear between the periods and the letters.

0 LOGICAL values cannot be used with relational operators (e.g. . t rue . ge.
c).

0 REAL and INTEGER type values can be compared.
0 Chapter 4, section 4.3 contains information on operator precedence.

The LOGICAL operators used to combine LOGICAL data terms formed with relational operators
and/or LOGICAL constants and/or LOGICAL variables are listed in the following table:

Table 4-3:

Opera tor

.and.

. o r .

. n o t .

Example Result

a .and. b . t rue . IF both a and h a.re . t rue .
. fa l se . IF either a or b are . f a l se .

a . o r b . t rue. IF a or b is . t rue .
. fa l se . IF both a and b are . fa l se .

. n o t . a . t rue . IF a is . fa l se .
. fa l se . IF a is . t rue .

0

0

LOGICAL operators can only be used with LOGICAL values as arguments.

Chapter 4, section 4.3 below provides information on operat.or precedence.

Expressions 4-3

4.3 OPERATOR PRECEDENCE

Precedence rules determine the order in which the operations will be evaluated in ex-

1) Precedence Rules for Arithmetic Expressions 4.3.1

2) l ' r (w(l cnw I3ult~s for Logical Kxprcssions l .3.2

3) Parcntheses to Force Precedence Rules 4.3.3

pressions. There are three types of precedence rules:

4.3.1 PRECEDENCE RULES FOR ARITHMETIC EXPRESSIONS

The following table lists the precedence order for all opcrators which can appear in an
arithmetic expression:

Table 4-4:

Operator

**
*, I
+ and -

Precedence le vel

first
second
third

e

e

Operators are evaluated in order of precedence listed above.

In the case of two operators which have equal precedence, evaluation takes
place from left to right.

In the case of the operator, "**," evaluation talccs place from right to left.
For example:

e

a ** b ** c

is evaluated as
a ** (b ** c > .

e Two operators cannot be placed in succession. E g . a * -b is illegal while
a * (- b is legal.

See Chapter 4, section 4.3.3 discusses the use of parentheses to force prece-
derice.

e

4.3.2 PRECEDENCE RVI,ES FOR LOGICAL EXPRESSIONS

The following table lists the precedence assignccl for all operators that, can appear i n a
LOGICAL expressioii:

Expressions 4-4

Table 4-5:

Opera tor Precedence

Relational Operators
. n o t .
. and.
. or.

li rs t
sccor1tl
third
fourtli

e Arithmetic expressions, heing compared with relational operators, are evalu-
ated using arithmetic precedence rules before relational operator precedence
rules are applied.
Some LOGICAL expressions are evaluated before all subexpressions are evalu-
ated. For example, if a is . f a l se . , then a .and. (c / b .It. 12) can
be determined by testing a, without evaluating (c / b .It. 12) . This
is useful for avoiding division by zero and other problems.

Two LOGICAL operators cannot appear consecutively, unless the second op-
erator is .not.

e

e

r---

4.3.3 U S I N G PAREK’TIIESES TO FORCE P R E C E D E N C E

Parentheses can appear in arithemetic, relational and LOGICAL expressions to alter the
normal sequence of evaluation.

e \\:hatever appears in parentheses is given higlicr precedence, and evaluated
prior to any other operators. Consider t lmc cxainplcs:

4 + 4/2 = 4 + 2 = 6 versus (4 + 4)/2 = 8/2 = 4

If a = .false., b = c = .true.
a .and . b . o r c = . t r u e . versus a .and. (b . o r . c) = . f a l s e .

, !
e 1 l i t . us(’ of parcnthcws is i i iandatoq. i v l i c ~ r i r l c y , ; r t i vv o r posit i v c . o1)wators

uscd in arithmetic expressions. E.g. a + -b is illegal while a + (-b) is legal.

Expressions 4-5

Chapter 5
Declaration Section

The dcclaratiori section appears immediately after the main program or siiLnoutine
header (Scc Chapter 2, section 2.1.5), and has two functions:

1)

2)
0

Allows the explicit declaration oi variables’ types.

Allows subroutines to be declared
The declaration section is optional; it need not appear.

The declaration section (when i t appears) has the following syntax:

DECLARE
(i’ariablc or Subroutine Deck)

END DECLARE
where:

(l’ariable or Subroutine Deck) consists of

0 nothing, it is optional
0

0

e

a variable type declaration (See Chapter 5. section 5.1).

a subroutine declaration (See Chapter 5, section 5.2).
a scries of variable type and/or subroutine tlcclarat ions scpnIai c d by carriage
ret 11 111s.

Thc (Variable or Subroutine Deck) end when the words END DECLARE are
reached.

FORTRAN blocks containing OKLY FORTRAN type declarations can also appear
inside a declaration statement (See Chapter 6, section 6.8). It is the user’s re-
sponsibility to place ONLY FORTRAN type declarations within FORTRAN blocks
in the declaration section. The SOL compiler DOES NOT catch the error
of using othcr FORTRAN statements in a declaration section FORTRAN block .

0

e

The following restrictions apply to the declaration statcmtwt, when it appears:

1) Th(> word DECLARE must appear alone on a lint..
0111~7 blank lines and comment lines can scy~nrat(a tlie declnratio~i section from
the prograni header.

Thc words, END DECLARE, must appear togcthcr. alonc on a siriglc line.

2)

3)

Ucclnrdion Section 5-1

5 . 1

Examples of the possible formats for the start of a SOL prograin follow:

1. PROGRAM just-an-example
DECLARE
END DECLARE

! empty d e c l a r a t i o n s e c t i o n
..
1 1 . PROGRAM j ust-an-example

! no d e c l a r a t i o n s e c t i o n
...
111. PROGRAM just-an-example

DECLARE
REAL a
LOGICAL s , t , e , f
END DECLARE

! d e c l a r a t i o n s e c t i o n with t y p e d e c l a r a t i o n s

This chaptcr is dividcd i i i t o three sections:

5.1 Discusses Variable type declarations.

5.2 Discusses Subroutine declarations.

5.3 Discusses the declaration section in subroutines, and how it differs from the
dcclaration section in the main program. Rfore information on a subroutine’s
dcclaration section can be found in Chaptcr 9.

VA RI AB LE T I T E D EC LA RAT1 0 S S

A variable type declaration associates a variable with a type. This is not to be confused
with variable initialization, which associates a variable with a value for the first time.

e

e

See Chapter 2 , section 2.1.2 for more information on variable initialization.

I’ariahle type declarations can OSLY appear in the declaration sections of
t hc iriain program and/or subrou t incs.

i’ariahles are always local to the rout inc (i x . thc m a i n prograiii or subroutinc)
in wliich they are declared.

Scc Chapter 5 , section .5.3 for details 011 siihroiitine dcclarat ions.

e

e

A \xriable declarat ion has the following sjmtas:

(type) (variable list)
 here:

(type) is onc of the following:

1) INTEGER
2) LOGICAL
3) REAL

.

Declaration Sectioii 3-2

(variable list) is one of the following:
1) a variable
2) a series of variables separated by commas.

If you do not explicitly give a variable a type with a variable declaration, it
is assumed to be of type REAL. Chapter 3 discusses types i lk detail.

I h c . o r h of tho declaration is unimportant; you can m a k e variable declara-
tioris in any order you wish.

0

, 7

0

The following rest,rictions apply to how variables can be declared:

The list of variables that follows the (type) cannot run over onto the next
line, unless the next line is explicitly defined as a continuation line with an
Qi symbol. (Remember, the & symbol must appear in the first column, See
Chapter 2, section 2.4 for details). Some examples follow:

Legal IllegaI

LOGICAL a, i n d e x e r , LOGICAL a, i n d e x e r ,
& found, b found, b

No more than one declaration can appear per line. For example:

Legal Illegal

LOGICAL I m
REAL legal

LOGICAL I m REAL i l l ega l

A variable cannot be declared to be more than one type. So, for example:

Legal Illegal

LOGICAL anamee
INTEGER d i f f e r e n t n a m e

LOGICAL samename
INTEGER samename

J'ou must put one or more blanks after the: type name to distinguish it frorn
the variable. For example:

LOG I CALa-var i ab1 e

is illcgal.

5 . 2 SUBROUTINE DECLARATIONS

Subroutine declarations appear in the declaration section of the rna in program; the
subroutine's name and its parameters are declared.

0 A subroutine must be declared before i t is called.

Declnrdion Section 5-3

Subroutinc declarations can only appc'ar i n thv tlcclarat,iori scBction of tlic
main program.

A siibroutinc dcclaration differs from a subroutiiic iii~j)l"i~i"iit,ation.

A subroutine declaration is a template describing the dependent and in-
dependent parameters, and the subroutine's name, although a subroutine
implementation describes the specific action a subroutine will perform. A
subroutine declaration provides no information about the specific action a
subroutine will perform.

Chapter 9 discusses subroutines in detail.

A subroutine declaration has the following syntax:

SUBROUTINE ((dep params)) = (sub name) ((indep params))
where:

(dep params) is the dependent parameter list. A patramcter list is one of the fol-
lowing :

1) nothing, an empty list is possible
2) a single SOL identifier. (Assumed to be type REAL)
3) an identifier/type pair which consists of:

(identifier) :
where: (type) is REAL, INTEGER or LOGICAL.

(type)

4) X series of 2) and/or 3) , separated by commas

For example. the following are legal parameter lists:

a , b y c y d : REAL, e : LOGICAL, f
a
a-var-param : INTEGER

(sub name) is a SOL identifier representing the subroutine's name.

(indep params) is the independent parameter list, and has a syntax identical to the
(dcp params) stated previously.

The folloiving restrictions apply to subroutine declarations:

Tlie entire subroutine declaration must appear on a single line. If it will not
fit. the continuation symbol, &. must be used. See Chapter 2, section 2.4
which provides more information on the continuation symbol. For example:

1)

Legal lllega I

SUBROUTINE SUBROUTINE
& (spread, out) = the-sub (1 (spread, out) = the-sub ()

Dcclnration Section 5-4

.

Any subroutine called by the main program, or another subroutine, must be
dcclared i n the dcclaration section of tlic h4AIN progriut1.

Subroutine names must be unique or an error results. You cannot declare
two subroutines with the same name.
Variables or parameters CANNOT have the same name as a subroutine.

Two parameters, in the same subroutine declaration, CANNOT have the
same name.

Dependent parameters are given to the left of the equal sign and are altered
by the subroutine.

Independent parameters appear to the right of the subroutine name, and are
NOT altered by the subroutine.

2)

3)

4)
5)

6)

7)

Ex A hi P LES :

111 the following example, each subroutine declaratioii is scparatcd hy a blank SOL com-
ment, and the declaration section of a SOL main program is also shown:

DECLARE

P (an-indep , another-indep
!

SUBROUTINE (dep, another : LOGICAL) = subrout

SUBROUTINE (> = a-sub (single :INTEGER)

SuBroutine (dep : LOGICAL, another :REAL) = the-sub (>

subroutine (> = simple ()

!

!

END DECLARE

Thc first declaration declares the subroutine subrout with four parameters.
l'lic second dependent parameter, another , is esplicit ly clcclared to be of
type LOGICAL whereas the remaining dcpcndent parameter, dep and the in-
tl(-pcridcnt paramctcrs are implicitly assumctl to bc of t.ypc REAL sincc no
t ! . p ~ dcclaration appears.

The second declaration declares the subroil tine a-sub wi th a single indepen-
dent parameter of type INTEGER.

The third declaration declares the subroutine the-sub wi th two dependent
parameters and no independent parameters.
T l i ~ final declaration declares the subrout inc s imple with no parameters.

Chapter 9 provides detailed information 0 1 1 subroutines. a n d their declara-
tion.

1)

3-1

3)

4)
0

llcclniur 1 ion Sect ion. .5- 5

5 .3 THE DECLARATION SECTION IN SUBROUTINES

.A declaration section in a subroutine is identical to the main program declaration section
w i t h one‘ csceptioii:

0 No suhrotitincs can IF declared i n the dcclaratiori scctioii ol’ a subrorit,inc,

Otlicrwisc i i i a i r i program ai id srtbrotitinc tlcclaratiori scct,ioiis arc. idciii iml. Thc syiitax
arid action descrilml in section 5.1 of this chapter apply equally to both tlw niain program
and subroutine declaration sections.

0 Chapter 9 discusses subroutines in detail.

Declaration Section 5-G

Chapter 6
s t at~enlcnt s

.

.

F'ollowing an overview of SOL statements, the chapter is divided into the following sec-
ti 011 s :

6.1

6.3
6.3
6.4
6.5

6.G
6.7
6.8

- Discusses the assignment statcrnent
- Discusses the PRINT statements
- Discusses the conditional statement, IF/THEN/ELSE
- Discusses the repetitive statements
- Discusses the ASSEMBLAGE and COMPONENT statcnierits
-- Discusses the OPTIMIZE statement
- Discusses the subroutine call statement
- Discusses the use of FORTRAN blocks

OVERVIEFV

SOL statements control the actions performed by a SOL program. The following restric-
tions apply to how SOL statements can be placed in a SOL program:

1) SOL statements can only appear t h e places in a SOL program:
0

0

0

In the SOL statement section of the main program.
In the SOL statement section of a subroutine implementation.

Inside another SOL statenicnt, (Inult i-line statcmcmt).

3)
3)

I3lank lincs are allowed on the. lincs Idorc: aiitl aftw all s t i ~ t c ' l ~ l e ~ ~ t ~ .

C'ornments are allowed on the lines before and after all statements.

Comments are allowed on the same line as a SOL statement, after the state-
ment.
Two statements CANNOT appear on the same line.

4)

5)
Several SOL statements are multi-line statemenfs: so a single stateniciit can be many

lines long. Regardless of the number of lines a statement occupies, a statement must start
alone on a line, and must end alone on a line. The following arc multi-line sta.tenients:

1) The OPTIMIZE statement

2) Tlic COMPONENT and ASSEMBLAGE statements

Statements &I

3) The conditional IF/THEN/ELSE statement
4) The repetitive DO statements

0 If a statement is not a multi-line statement, and it won’t fit on a single line,
then the continuation symbol, &, must be used. See chapter 2, section 2.4
which describes the continuation symbol in detail.

‘Tlic gcricral structiirc of a SOL program is dcbi lwl in Chapter 2, scctioii
2.1.5.

0

6.1 THE ASSIGNhlEKT ST-4TEMENT

Assignment statements give variables a value. Variables can be initialized by assignment
statements. Tlie assignment statement has the following syntax:

(id) = (cxpr)
wliere:

is a SOL identifier. (Extended idcntificrs used for ASSEMBLAGES or
COMPONENTS CANSOT be used: Sco Chapter 7 , section 7.1.2 for de-
tails).

(expr) is a SOL expression.

‘The expression on the right side of the assignment staterncnt’s equal sign is evaluatctl

The following restrictions apply to assignment statements:
and the resulting value is assigned to the variable.

Assignment statements must appear alone on a line. If an assignment state-
ment will not fit on a line, the continuation symbol must be used. (Further
details appear in Chapter 2, section 2.4). For example:

1)

Legal

a-var = (43 +
& r ** 2)

a-var = (43 +
r ** 2)

There are two types of assignment statements in SOL:

1) A d hmetic Assignment Statenicnts . . .
2) Logical Assignment Statements

. 6.1.1

. 6.1.2

6.1.1 .\RITIIhlETIC .k%IGShlE?U‘TS

Tlie arithmetic assignment assigns to the variable on the left, of the equal sign, the value
of the arithmetic expression on the right of the equal sign.

,

~

Si (I I em en 1 s 6-2

The arithmetic assignment statement has the following syntax:
(a-variable) = (arith-expression)

wl1crc:

(i i - w i . i a I t l ~ -) i s i i REAL 01‘ INTEGER v; i r i ; i l~ l (~

..

(arith-expression) is an arithmetic expression. Chapter 3 , section 4.1 details arith-
metic expressions.

The following restrictions apply to arithmetic assignment statements:

Tlic equal sign does not mean “is eqiial to,’’ as i n conillion mathematical
usage. It means, “is rcplaccd by.” For exaniple:

1)

a = a + l

This statement means, “replace the current value of the variable
named ‘a,’ with the sum of a’s current value and one.”

All variables which appear on the right-hand side of an assignment statement
3II-ST be initialized before their appearance.
The expression on the right-hand side must evaluate to a REAL or INTEGER
value.

Lhriables on the left side of an assignment statement cannot be signed. (e.g.
- a = a * 3 is illegal because “-a’, cannot appear on the left-hand side of an
assignment statement.

Type checking of arithmetic assignment statements is rclased. In some cases, if the value
of the evaluated expression is of a different type froin the variable, the result is converted
into a value of the variable’s type.

3)

3)

4 1

The folioivirig tahlc details how types arc convcrted:
Table 6-1:

\’ar Tjvpc Expression Type

INTEGER INTEGER
INT?EGER REAL
INTEGER LOGICAL
REAL INTEGER
REAL REAL
REAL LOGICAL

Expression c o n ~ w t e d to

INTEGER
INTEGER, REAL is truncated
error -- illegal assignment
REAL, INTEGER converted
REAL
crror - illcgal assigiiment

Chapter 3, especially sections 3.1 - 3.3 . offcrs somc dctai l o i l the. conccpt ol TYPE.

The logical assignment statement assigns to the variahle on the left of the equal sign,
the value of the logical expression to the riglit of the cqiial sign.

Statements 6-3

The logical assignment statement has the following syntax:
(a-var) = (logic-expr)

where:

(a-var) is a LOGICAL variable

(logic-cyr)

1 he following restrictions apply to logical assignnicnt statemcnts:

i s a logic.al cxprc-ssion. (’ l i a p t c ~ S I , sc~i.iori I .2 tl(.Ii1iIs logical cixl)r(’s
sioiis.

r ,

Ttic equal sign does not mean “is equal to,” as in common mathematical
usage. It means, “is replaced by.” For example:

1)

a = .not. r

This statement means, “replace the current value of the LOGICAL
variable named a, with the negation of the LOGICAL variable r.”

All variables which appear in the right side of an assignment MUST be
init ializecl before their appearance.

The expression on the right-hand side must evaluate to a LOGICAL value.

2)

3)
Type checking of logical assignment statements is strict: a LOGICAL variable can only be

assigned a LOGICAL value. The following table details the results of such assignments:
Table 6-2:

I‘ar Type Expression Type Expression converted to

LOGICAL INTEGER error ~ ilkgal assignment
LOGICAL REAL error -- illegal assigiiment
LOGICAL LOGICAL LOGICAL, value of expression.

Chapter 3, especially sections 3.1 - 3.3, offers some detail on tlic concept of TYPE,

6.3 T H E PRINT ST-ATEhIENTS

SOL print statements are used to write valucs aiid messages from your cxecutirig SOT,
program to an external logical unit, which by default is your terminal.

0

0

0

The external unit is not user defined.

SOL uses cxternal logical uni t 6 (SI’SSOr“1’I’lJT 011 VAS/VMS syst,cms).

For iiiteractive SOL programs external logic-a1 unit G will he your terrninal
by dcfault.

For batch jobs, this cstcrnal logical u r i i t 6 defaults to lw tllc batch log file. 0

Stntements 6-4

SOL provides two kinds of print statements:

1) the PRINT statement

6.3.1

the SUMMARIZE print statement (ADVANCED MATERIAL). The SUMMARIZE
print statement is discussed in Chapter 7, section 7.1.1.3.

2)

0 sce Chapter 7 for more detailed iriforniation on ASSEMBLAGES or COMPONENTS.
This section is divided into two sections:

6.2.1 - Discusses the PRINT statement.
6.3.3 - Discusses the format part, of PRINT and SUMMARIZE print stat ement,s.

P RI N T STAT El1 ENT

SOL'S PRINT statement provides a means of writing values or messages from an executing
SOL program to a n exter~ial logical unit.
PRINT statcrnents have the following syntax:

PRINT (printlist)
where:

(printlist) is the list of items to be printed, consisting of one of the following:

1) a variable
Example: PRINT a - v a r i a b l e

2) a string
Example: PRINT ' T h i s is a s t r i n g '
0

3) an optional sign(+ or -), followed by a numbcr
Examples: PRINT 23 or PRINT -143.2

4) a variable. followed by a colon, :. followlrcd by the desired print
format.
Example: PRINT a - v a r i a b l e :

a string CANNOT be longer than 61 characters.

(forillat)
5) an optional sign-number pair. f'ollo~ved by it colon, :, followed
by a format.
Example: PRINT -23.4 : (format)
6) a mixed series of the five choices abovc, separated by commas.
Examples :

i) PRINT a -va r , -2.3 :
i i) PRINT ' t r y Aga in ' , a -var :

(forinat)
(foimiat,)

S'tatements 6-5

7) nothing
Example: PRINT
0 ’l’liis has tlw d f c v . t , o f wril.iiig it l)liliik l i i i (* .

In the exaniplcs above, the word, (format) , appears where a n actual format would

The following restrictions apply to PRINT statements:

appear. Formats arc tliscussetl i n the next section of this chapter, sectiori 6.2.2.

1)

2)

Variables used in PRINT statements must be initialized before use.

No comma appears after the last item in a print list.

The format 1II:ST lie compatible with tlie variable or nuriilwr prinkd. Scc.
s c ~ t ion 6.2.2 of this chapter for details.

Print lists must appear on the same h i e as the word, PRINT.

3

4
0 If the print list is too long to fit on the line, use the continuation

symbol, &, to continue the list on the next line. See Chapter 2,
section 2.4 for details on the continuation symbol.

A string cannot be “split” over two lines with a continuation
syml~ol, rather the entire string must be moved to the next line.

0

*5 1 Print lists CXSSOT lie longer than 20 items in length.

6 . 2 . 2 FORMATS FOR PRINT AND SUhIAIARIZE PRINT STXTEMEXTS

The PRINT and SUMMARIZE print statements use formats identically. The format part of

There are foiir formats available in SOL
either print statement specifies the way in which output data will be displayed.

E compatible with values of type REAL 6.2.2.1

F compatible wi th values of type REAL 6.2.2.2
I compatible with values of type INTEGER 6.2.2.3

L compatible with values of type INTEGER or LOGICAL 6.2.2.4

0 The format must be compatible wi th the varia1)lc or nunher being printed,
thc compatibility rules are given above: or an error will result.

Since summarization variables are of typc REAL by default (Chapter 7, section
7.1.1.1). only t hc E and F formats arc legal for iisc wit 11 the SUMMARIZE print
statcwient.

0

G.2.2.1 Tho E Format

The E format is conipatililc with valuc!s of typc REAL.

Stdements 6-6

The E format has the following syntax:
E (width) . (digits)
where:

(width) is a positive integer representing the size of the print field.

(digits) is a positive integer, representing the significant digits for rounding.
Note: No spaces can appear between the (width) , decimal point arid (digits) .

EXAMPLES :

E12.3, E 12 .3 , E 3 . 2 , E12.12, a n d e i 2 . 7 .

The E format transfers the value to be printed, rounded to (digits) decimal digits and
right-justified, to an external field that is (width) characters wide. The value is displayed
with scientific notation.

The following restrict ions apply:

1) If the value does not fill the field, leading blank spaces are inserted.

If the value is too large for the field, the entire field is filled with asterisks,
and a rulitime error message appears.

The term, (width) , should be at least (digits) + 7.
The term. (digits) , must be greater than zero. A runtime error results if
the term (digits) equals zero.

The term, (width) , must be greater than zero, or a compile time error
results.
Both of the terms, (digits) , must appear and must be
separateci by a decimal point. If a single term appears, or the decimal point
is excludtid, a compile-time error will result

2)

3)
4)

5)

6) (width) and

Statements 6-7

Examples of the E format in action are given in the following table:

Table 6-3: E Format Output Example
0 in what follows, means a blank space.

Format Internal value Value printed

E9.2
E12.5
E12.3
E10.3
E5.3
E12 .O
E9
E.4
E12.5
E0.2

475867.222
475867.222
0.00069
-0.5555
56.12
456.777
73.34
+1999.334
6
1.23456

u 0.48E+06
u 0.47587E+06
u u u 0.690E-03
-0.556E+OO

runtime error (1)
compile time error (2
compile time error (3
compile t8ime error (4)
compile t iine c v o r (5)

i

1)
2)

3)
4)

5)

The first runtime error occurs because the term, (digits) , equals zero.

Using E9 is illegal because no term (digits) , is given.

Using E.4 is illegal because no term (width) , is given.
Using E12.5 is illegal because an E format cannot be used with INTEGERS.
Using E 0 2 is illegal because the term (width) , equals zero.

6.2.2.2 The F Format

The F format is compatible with values of type REAL. It has the following syntax:

F (width) . (digit:,)
where:

(width) is a positive integer representing t h e size of thc print field.

(digits) i b a positive integer. representing the significant digits for rounding.

Note: No sp,.tces can appear between the (width) . decimal point and (digits) .

F12.3, F 12.3, F 3.2, F12.11, andf12 .7 .

The F format transfers the value to be printed, with the fractional part rounded to
(digits) decimal digits and riglit-justified, to an external field that is (width) characters
wide. The value is displayed with ordinary decimal notation.

The following restric-ions apply:

1) If the valiie does not fill the field, leading blank spaces are inserted.

Statements 6-8

If the value is too large for the field, the entire field is f i l l (~ 1 with asterisks,
and a runtime error message appears.

The term, (width) , should be at least (digits) + 4.
Both of the terms, (width) and (digits) , must appear and must be
separated by a decimal point. If a single term appears, or tlie decimal point
is excluded, an error will result.

2)

3)
4)

Examples of the F format in action are given in the following table:

Table 6-4: F Format Output Example
0 in what follows, means a blank space.

Format

F8.5
F8.5
F9.3
F2.1
F10.4
F11
F. 12
Fl. 10
F0.2
F6.0

Internal d u e

123456789
-1234.567
8789.736 1
51.44
-23.24352
93.45678
123.23178
1234.34
12.345987
1234.567

Value printed

compile time error (1) ******
u 8789.736 **
u u -23.2435
compile t,ime error (2)
compile time error (3)

compile time error (4)
1235. (rounded up)

*

The first compile time error for F8.5 occurs because the F' format is not
compatible with integer values, like 123456789.

The use of F11 is illegal because no term (digits) appears.

'I he use of F.12 is illegal because no term (width) appears.

The use of F0.2 is illegal because (width) must bo greatc.r than zero.

1)

2)

3)

4)

6.2.2.3 The I Format

The I format is compatible with values of type INTEGER. It has the following syntax:

I (width)
where:

(width) is a positive integer representing the size of the pri~it field

EXAMPLES :

112, I 9, I 3, Ill, i 6, i, and I.

Statements 6 -9

The I format transfers the value to be printed, right-justified, to an external field that is
(width) characters wide. When (width) is left blank, a default, value of twelve is used.
The value is displayed with ordinary decimal notation.

The following restrictions apply:

INTEGER values cannot be larger than 2147483647. Attempting to display
such a value will give a runtime error.

If the value does not fill the field, leading blank spaces are iiisertcd.
If the value is too large for the field, the entire field is fillctl with asterisks,
and a runtime error message appears.

The term, (width) , must be large enough to include a minus sign when
necessary. (negative numbers will have minus sign as the leftmost nonblank
character)

1)

2)

3)

4)

5) The term, (width) , cannot be zero.

Examples of the I format in action are given in the following tablc:

Table 6-5: I Format Output Example
0 in what follows, means a blank space

Format In tern a1 value k'alue printed

I3
I4
I5
I
I2
I3
I7
I
IO

2 84
-284
174
123456
3244
-473
29.876
123456789012
385

compile time error (1)
compile time error (2)
compile time error (3)

The use of I7 is an error because the I format is not compatible with a REAL
value, like 29376.

The use of I is not illegal, but the riiiinber 1203.56759O12 is too large to bc
a legal integer, so a compile time error results. If the value is not known at
compile-time, as with a variable, a runtime error would rc.;ult instead.

The use o f IO is an error because the term (width) , equals zero.

1)

3)

3)

6.2.2.4 The L Format

The L format is compatible with values of type INTEGER or type LOGICAL.

Stntements 6-10

The L format has the following syntax:

L (width)
where:

(width) is a positive integer representing the size of the print field

EXAMPLES : -

L12, L 9 , L 3, L l l , 1 6 , 1, andL.
For LOGICAL values, the L format transfers either a T [if the value is. true .) or a F (if

the value is . f a l se .) to an external field that is (width) characters long. When (width)
is left blank, a default value of two is used. The T or F is in the rightmost position of the
field, preceded by (width) -1 spaces.

For INTEGER values, the L format transfers either a T (if the value equals one) or a F
(if the value does not equal one). If (width) is left blank, a default value of two is used.
Otherwise, the T or F is in the rightmost position of the field, preceded by (width) -1
spaces.

The following restrictions apply:

1)
2) The term, (width) , cannot be zero.

If the value does not fill the field. leading blank spaces are inserted.

Examples of the L format in action are given in the following table:

Table 6-6: L Format Output Example
0 in what follows, means a blank space

Form a t

L
L1
L4
L
L 1
LO
L2

Internal value Value printed

.true.

. true.
.false.
28
1
. fa l se
1 . o

U T
T
u u u F
u F
T
compile time error
compile time error

1)

2)

The use of the LO format is illegal because (wid th) equal5 zero.

The use of the L2 format is illegal I>ecause the L format cannot be used with
REAL values, like 1.0.

4

Statements 6-1 1

6.3 THE CONDITIONAL STATEMENT

SOL provides a single (multi-line) statement for conditional branching: the I F statement.
The IF statement consists of two parts:

1) a required THEN part

2) an optional ELSE part
0 The IF statement evaluates a logical expression and performs a specified

action, the THEN part, if the expression evaluates l o . t r u e .

The ELSE part is optional. When present. it only executes if the logical
expression evaluates to . f a l se .

The I F statement has the following syntax:

0

IF (logic-expr) THEN

(optional-ELSE)
(SOLstatements)

END IF

where:

(logic-expr) is a logical expression. See Chaptcr 4, section 4.2.

(SOLstatements)

(OptionalXLSE)

is a series of one or more SOL st.atements.

is one of the following:
1) Nothing - the ELSE part is optional.
2) An ELSE part, with the following syntax:

ELSE
(SOLstaternents)

where :

(SOLstaternents) is a series of wro or niore SOL state-
ments.

So, an I F statement will have one of the following formats:

IF (logic-expr) THEN
(SOLstat enients)

END IF

1)

I F (logic-espr) THEN
(SOLstatements)

ELSE
(SOLstatements)

END IF

‘2)

0 Additionally, you can use ENDIF, wi th no space, as a ~ q) l ; t c ~ ~ t i i e n t for END IF

Statements 6-12

The following restrictions apply to IF statements:

The word IF, the (logic expr) , and the word THEN MUST appear alone
on a single line. If they will not fit on a single line, then the continuation
symbol, &, MIJST t>c% u s c d . I:url,ller details ai-(' i i i Cliaptclr 2, wctiori 2.4.

1)

Legal

IF .no t .
& a THEN
PRINT 'I am ok'
ENDIF

IF . n o t .
a THEN
PRINT 'I am not ok'
ENDIF

2) The word ELSE, when it appcars, MUST be alone on a singlc line.

Legal Illegal

IF a .g t . 10 THEN IF a .g t . 10 THEN
PRINT 'This is ok' PRINT 'The then part i s ok'
ELSE ELSE print 'But the else part i s i l l egal '
PRINT 'Ok too ' END IF
ENDIF

3) The ENDIF or END IF MUST appear alone on a line.

IF statements can be nested. The word ENDIF will match the nearest pre-
ceding IF. For example:

4)

01 IF a . I t . 20 THEW
02 IF a .g t . 5 THEN
03 PRINT 'greater than 5'
04 ELSE
05 IF a .eq. 5 THEN
06 PRINT 'equals 5 '
07 ENDIF
08 ENDIF

0

0

0

The ENDIF on line 7 matches the IF on line 5.
The ENDIF on line S matches the IF on line 2.
An error results because there is no ENDIF for the IF statement
on line 1.

Disregard indentation when matching ENDIFs. 0

The IF/THEN/ELSE statement is a block in SOL, and must, abide by special
scope rules outlined in section 6.3.1 of this chapter.
ASSEMBLAGE or COMPONENT statements CANNOT appear inside an IF state-
men t .

5)

6)

Statements 6-13

~ EXAMPLES :

Example 1:
IF crazy THEN

ELSE
print 'Yep, you are crazy'

print 'Hope, you OK'
EBD IF

This example prints a different line of text, depending on the valuc of thc logical variable,
crazy.
Example 2:

IF (a .gt. b) .AID.
& (b .gt. c) THEB

desirability = 50
ELSE

IF (a.lt. b) .Am.
& (b .It. c 1 THEB

PRIBT 'a is greater than c '

PRINT 'a is less than c
desirability = 0

PRINT 'What do I know?'
desirability = 100

ELSE

EBDIF
EHD IF

This example prints a different line of test, and sets the value of a variable, desirabil-
ity, depending on the values of two relational expressions. It also illustraics the use of the
Si continuation symbol to continue a long expression (See Chaptcr 2, section 2.4).

~ 6.3.1 SCOPE RULES FOR IF STATEMENTS

The I F statement is a block in SOL, which affects how variahles are initialized within
an I F statement:

0 The chief characteristic of a block is that variables can be initialized within
the block and remain uninitialized outside the block. Variables with this
property are called local variables.

0 It is possible to initialize local variables in thrb THEN part, and/or the ELSE
part of an I F statement.
1-ariable initializations are considered local to a n I F statement if and only if
both of the following are true:

0

1. The variable is uninitialized at the start of the I F statement.
b

1 Statements 6-14

A

..
11. The variable is initialized in either the THEN part of the IF state-

ment, or the ELSE part, but NOT BOTH. A variable which is
initialized in both the THEN and the ELSE part of an I F state-
ment is NOT considered local to the I F statcmcnt.

When the I F statement ends, indicated by tht. worcls ENDIF or END IF , local
variables initialized within the I F statement bcconic uninit ialized.

In Chapter 2, section 2.1.2 the concepts of scope, block, and variablc initial-
ization are discussed.

Chapter 11 discusses scope rules in depth.

0

0

0

These scope rules follow from SOL’S stringent error checking. One cannot be certain
that the statements in the THEN or the ELSE portion of an I F statement will be executed.
Statements in the THEN part are executed only when the condition is true, and statements
in the ELSE part are executed only when the condition is false. Therefore, it is uncertain
whether a variable initialization which only appears in either the THEN or ELSE portion of an
IF statement, will occur. SOL will not allow a variable to be used unless its initialization is
certain. Hence, the scope rules require that only a local variable be initialized when it is not
certain that the initialization will actually take place.

E X A hl PLES :

In these examples, assume all variables are uninitialized before the code in the example
begins.
Example 1:

a = 65
IF a .g t . 30 THEN

ENDIF

Is variable, “a,” local to the IF statement?

NO. The variable was initialized prior to the start of the I F statement. After the I F

a = 7

statement, “a” will have the value 7.
Example 2:

IF .true. THEM
a = 6

b = 4
ELSE

ENDIF

Is variable, “a,” local to the IF statement?

YES. It is uninitialized at the start of the IF , and “a” is initialized in the THEN part
only. After the I F statement ends, “a” will be uninitialized, and cannot be printed, used in
arithmetic expressions and so on.

b = 9

Is variable, “b,” local to the I F statement?

NO. It is initialized in both the THEN and the ELSE part of the I F statement. The variable
“b” will have the value 4 after the I F statement has ended (because . t r u e . is always true).

Statements 6-1 5

. -. - . . I.

Example 3:
c = 20

IF c . g t . 2 THEY

ELSE
a = 6

a = 7
EBDIF

IF a . I t . 12 THEY

EIlDIF

Is variable, ”a,” local to the second IF statement?

NO. Because the variable “a” was initialized in both the THEN and ELSE part of the
first IF, “a” is not local to the first IF. Thus, “a” has been initialized BEFORE the start
of the second I F statement, and CANNOT be local to the second IF. Wlien the second I F
statement ends, “a” will have the value 10.
Example 4:

a = 10

IF . true . THE3
c = 20

IF c . g e . 15 THEM

EBDIF
a = 7

ELSE
a = 6

WDIF

Is the variable, “a,” local to the encompassiiig I F statement?

YES. “a” is only initialized in the ELSE part of the encompassing I F statement, so it is
a local variable. In the THEN part of the encompassing I F statement, another I F statement
appears. This I F statement initializes a local variable, “it.’) This local “a’) becomes unini-
tialized when the inner I F statement ends, so “a” is never initialized in the THEN part of the
encompassing IF.
Example 5:

c = 5
IF c .It. 12 THEN

IF c . g t . 10 THEN

ELSE
a = 7

a = 4
ENDIF

ELSE
a = 6

ElDIF

Is the variable, “a,” local to the encompassing IF?
A

I Statements 6-16

NO. “a” is initialized in both the THEN and ELSE parts of the encompassing IF, so “a”
is not local. This example is similar to 4), except that the inner IF statement, inside the
encompassing I F statement’s THEN, initializes “a,” in both the THEN and ELSE part, so that
the variable “a” is initialized in the THEN part of the encompassing IF statement.

0 The rules are simple, but when IF statements are nested within themselves
and other statements, applying the rules may become a little complicated.

These rules exist to prevent key variahlcs froi i i ac.ci(lt-nttly Iwiiig lcft 1111 in i -
tialized.

A variable that is uninitialized before an IF statement, can ONLY be initial-
ized when the variable is initialized in both the THEN and in the ELSE part
of the I F statement.

The rules insure that if a variable initialization is dependent on a condition,
only a local variable is initialized.

0

0

0

G.4 REPETITIVE STATEMENTS

SOL’S repetitive control statements are called DO loops. DO loops specify the repetitive
execution of one or more SOL statements. SOL provides two types of repetitive control
statements :

an iterative repetitive statement 6.4.1

a conditional repetitive statement 6.4.2
1)

2)

6.4.1 T H E ITERATIVE DO LOOP

The iterative DO loop specifies the repetitive execution of a statement, or statements,

The iterative DO loop has the following syntax:
DO (var) = (initial-exp) , (final-esp)

END DO
where :

based on the value of an automatically incremented control irariable.

(loop-body)

() is a legal SOL identifier. This is callctl t l i e loop control variable,
because it controls thc iteration of t l i c loop.

(initial-exp) is an arithmetic expression.
information on arithmetic expressions.

See (’liaptc~. 4. scction 4.1 for more

(final-exp) is an arithmetic expression.
information on arithmetic expressions.

Sec Chapter 4, section 4.1 for more

(loop-body) is one or more SOL statements.

Additionally, the single word, ENDDO, can be used instcad of t l i c words, END DO.

Statements 6 -1 7

Generally, an iterative loop works as follows:

The value of (initial-exp) is calculated.

The control variable is assigned the value of (initial-exp) .
The value of (final-exp) is calculated.
If the value of the control variable is less than or equal to the value of
(final-exp) then SOL statements in (loop-body) are executed; the control
variable is incremented by 1; and this step is repeated until the control
variable is greater than the value of (final-exp) . The loop ends, skipping
step 5) , and program execution continues with the statements that follow
the ENDDO.

If the INITIAL value of the control variable is greater than the value of
(final-exp) , the loop executes once and a runtime warning mes-
sage appears. The control variable is incremented, and then the loop ends.
Program execution continues with the stateiricnts which follow the ENDDO.

Because of rule 5 , an iterative DO loop will always execute at least once.

EXAMPLES :

Example 1:
DO control = 1 , 5

EWDDO
PRINT control : F4.2

PRINT 'Here I go again'

will produce the following output at the terminal:
Here I go again
Here I go again
Here I go again
Here I go again
Here I go again
6 .00

The following restrictions apply to iterative DO loops:

The value of the control variable CANNOT he altered inside the loop. This
restriction insures that the control variable is i~icrcmcnted with every itera-
tion. If yoii attempt to do so, a compile-tiinc wror will rc.sii11.

1111 variables which appear in tlic initial aiitl final ar i l I i i i i d , i c cbspressions mis t
be initialized prior to their use.

The control variable must be of type REAL or INTEGER.

1)

2)

3)

Statements 6-18

The values of both arithmetic expressions will be treated as being of the same
type as the control variable. Thus, if our control variable is of type INTEGER,
the following loop:

4)

DO c o n t r o l = 1 . 2 , 10 .9

ENDDO
PRINT ’Convert me’

will be treated as if you typed the following:

DO c o n t r o l = 1, 10

ENDDO
PRINT ’Convert me’

REAL values are truncated, not rounded, when convcrtiiig from REAL to I N -
TEGER.

The start of the loop, consisting of “DO (var) = (initial-exp) , (final-exp)
,” must appear alone on a line. If it is too long to fit alone on a line,
the continuation symbol, &, must be used. (Chapter 2, section 2.4 offers a
detailed discussion of the continuation symbol)
The end of the do loop consisting of ENDDO or END DO, must appear alone on
a line.
A COMPONENT or ASSEMBLAGE statement CANNOT appear iiisidc a loop

An inner loop’s control variable cannot have the same name as an outer
loop’s control \variable.

5)

6)

7)
8)

Some helpful facts about iterative do loops:

The loop will eventually terminate. The initial value is calculated at the
start of the loop, and cannot change. The final value is also calculated at
the start and cannot change. Therefore, there is a finite difference between
the initial and final value. As the control variable is incremeiited each time
the loop repeats, eventually the control variable will be larger than the final
value, and the loop will terminate.

If the initial value is 2 the final value, the statements of (loop-body) will
execute only once.

Loops can be nested inside each other. However, loops cannot, alter the value
of an enclosing loop’s control variahlc or an error will rcsiilt,. Also, a loop’s
control variable cannot liavc~ t Iic. same iiame as H I I ciiclosiiig loop’s control
variable.

1)

9

3)

Statements 6-19

Example 1:
D o n = I, 5

EPDDO
print 'the f i n a l value: J , n : f 4 . 2

This loop will produce the following output at the terminal:

print n : 1 4 . 2

1 .oo
2.00
3.00
4.00
5.00
THE FIlDAL VALUE: 6 00

Example 2:
D o n = I. 3

print n : 14.2
DO another = 4 , 6

EBDDO
print ', another : f 4 . 2

EYDDO
print 'the f i n a l value: ',n : f 4 . 2

This loop will produce the following output at the terminal:

1.00
4.00
5.00
6.00

2.00
4.00
5.00
6.00

3.00
4.00
5.00
0.00

THE FINAL VALUE: 4.00

This example illiistratcs tlic effects ~f rivst c d loops.

Statements 6-20

Example 3:
Line numbers have been displayed to facilitate discussion:

01 DO a = 12.1
02 print 'here I am'
03 ENDDO
04 print a : f 5 . 2

This loop produces the following output at the terminal:
*** RUYTIHE WARNING FOR LINE NUMBER: 1
DO A = 12, 1
INITIAL BOUND IS 12.00
FINAL BOUND IS 1.00
WARNING: INITIAL > FINAL *** LOOP WIU EXECUTE ONCE
here I am
13.00

-4 warning message, at runtime, is issued hecause the initial \ d u e is greater than the
final value. The loop executes once.

6.4.2 THE CONDITIOKAL DO LOOP

The conditional DO loop executes one or more statements until a specified condition is

DO

END DO WHEN (logical-exp)
where:

true. The conditional DO loop has the following syntax:

(loop-body)

(loop-body) is one or more SOL statements

(logical-exp) is a logical expression (one that evaluates to . t r u e . or . f a l s e . See
chapter 4 for details.)

Additionally, the single word, ENDDO, can be used instead of the words. END DO.
In general, the conditional DO loop works as follows:

1) T h c statements in (loop-body) arc cwwitcd.

2) 'I'he valuc of (logical-csp) is calculatccl. II' ttic (logic;il-c.sp) evaluat,es
to . t r u e . , the loop is terminated and program execution c.ontinues with the
statements after the word, ENDDO.

3) Steps 1) through 2) are repeated until the loop terminates
Clearly. if (Logicalsip) never evaluates to . t r u e . , the DO loop will riot terminate,

and an infinite loop will result.

Statements 6-21

For example, consider the following conditional DO loop:
stop = . f a l s e .
n = O
DO

n = n + l
PRINT n : F4.2
IF n .eq. 5 THEM

stop = . true.
EHD IF

EllDDO Y A E l stop

This loop will produce the following output at the terminal:

1 .oo
2.00
3.00
4.00
5.00

The execution of the loop terminates when stop is assigned to be . t r u e . , which occurs

The following restrictions apply to conditional DO loops:
when n equals five.

1) The word, DO, must appear alone on a line, or an error will result.
The end of a loop, “ENDDO WHEN (logical-exp) ,” must appear alone on a
line. If your logical expression is too long to fit on a single line, the line must
be continued with the continuation symbol, &. See Chapter 2, section 2.4
which provides more information on the use of the continuation symbol.

If (logical-exp) consists of a single variable, and that variable is left unini-
tialized or is missing, an error will result. (The SOL compiler will inform
you that the missing variable has been replaced with the symbol, . t r u e .)

Any variables used in the logical expression, (logical-exp) must be initialized
prior to use. (See Chapter 4 which provides more information about logical
expressions)
A COMPONENT or ASSiGiYiEiAGE statement cannot appear insidc a DO loop.

2)

3)

4)

5)

6.5 -4 S S EM B LAG E AS D C 0 ?\I I? 0 N ENT S T-AT Ehl E NTs

The ASSEMBLAGE statement is a data/modeling structure used for sizing. An ASSEMBLAGE
models a “whole;” but an ASSEMBLAGE is a special kind of “wholc.“ one which equals the sum
of its parts. The COMPONENT definition statement represents a n individual piece of the total
ASSEMBLAGE. For example, an airplane wing can be considered as an ASSEMBLAGE, where
the weight of the wing equals the sum of the COMPONENT parts, such as flaps, wing box,
skin, hydraulic systems, cooling systems, engine mounts and so on. Because ASSEMBLAGES
and COMPONENTS are a unique feature of SOL, Chapter 7 is dcvoted entirely to a detailed
discussion of ASSEMBLAGES and COMPONENTS.

Statements 6-22

6.6 T H E O P T I M I Z E STATEMENT

The OPTIMIZE statement provides an interface into a state-of-the-art numerical opti-
mization routine, ADS. Thus, optimization is a high-level statcvtient in SOL. Chapter S is
devoted to a detailed discussion of the OPTIMIZE statcmcnt.. Por fur thcr iiilormation abori 1
ADS proper, please consult “ADS - A FORTRAN PROGRAM FOR AUTOMATED DE-
SIGN SYNTHESIS - VERSION 1.10”, NASA Contractor Report 177985, Grant NAGl--
567, 1983, by G.N. Vanderplaats.

6.7 T H E SUBROUTINE CALL

A subroutine call specifies parameters that will be passed to a routine and executes the

((dependent list)) = (routine name) ((independent list))

routine. SOL subroutine calls have the following syntax:

where:

(dependent list)

(routine name)

(independent list)

is the list of dependent parameters, the variables which will be
initialized or altered by the subroutine. This list consists of one
of the following:
1) an empty list, nothing.
2) a single variable
3) a series of variables, separated by commas.
0 no comma can appear after t,he last item in the list.
hlore information on the dependent parameter list can be found
in Chapter 9, section 9.2.

is the nanic of thc subroutine. This must be a lcgal SOL identifier.

is the list of iiidependcnt parameters, the variables which will
supply data needed as input to the subroutine. An independent
parameter list has the same syntax as the (dependent list)
detailed above. h4ore information on the (independent list)
can he found in Chapter 9, section 9.2.

The following restrictions apply to Subroutine calls:

The subroutine call must appear on a single line in your SOL program. If the
call will not fit, then the continuation symbol & must be used. (See Chapter
2 , section 2.4 which details the use of the continuation symbol)

The subroutine hlUST be declared i n the main program declaration section
before it is called. (See Chapter 5, section 5.2)
‘I’hci suhroutinc MUST IIC implemcxitcd in t t i c suI~rou1,iric~ iiiiplementation
section or an error will result.

The subroutine name IIUST be the same for the declaration, call, and im-
plementation. Further, the formal and actual paramcters MUST match in
both number and type. (See Chapter 9, section 9.2 for details).

1)

2)

3)

4)

Statements 6-23

..

Only variables can be passed as parameters, values such as: 6 , 8
. t r u e . may not be passed directly as subroutine parameters.
Any variable passed as an independent parameter to a subroutine M
initialized before the suhoutine call.

5)

6)

0 0 , or

JST be

E X A hl PL ES :

Example 1:

(x , y) = ThothO

This statement calls the subroutine named, Thoth. and returns the variables x and y as
dependent parameters. There are no independent variables, so the independent parameter
list is empty.
Example 2: (x) = Caloriiic-Caluminations(x)

an independent parameter and returns x as a dependent parameter.

Example 3:

This statement calls the subroutine named, C a l o r i f ic-Caluminations. and passes x as

() = Craven-Dastard (>

This statement is a call to subroutine CravenDastard, with neither dependent nor

Chapter 9 gives a detailed discussion of subroutines.
independent parameters.

(3.8 FORTRAX BLOCKS (.ADVANCED h.Z-ATERIAL)

You can write FORTRAN code inside a SOL program. The FORTRAN code must be delimited;
with /* indicating the beginning of a FORTRAN block. and * indicating the end of a FORTRAN
block. In this way, a SOL program can interface with existing FORTRAN routines.

There are several important restrictions on the use of FORTRAN blocks:

FORTRAN blocks can only appear in the statement and declaration sections of
the main program or subroutine implementations.

FORTRAN type declarations should OX1,Y appear i r i it FORTRAN block 1NSTI)IC
a SOL DLCLARATION section. ONLI’ FORTRAN tylx: declarations should
appear in FORTRAN blocks inside a SOL declaration section.

The SOL compiler does NOT offer error-checking for the
contents of FORTRAN blocks. It is the SOL user’s responsibility to
use FORTRAN blocks inside SOL declaration sect ions correctly.

ONLY FORTRAN statements should appear in FORTRAN blocks inside the state-
ment sections of SOL programs.

1)

2)

e

3)

Statements 6-24

0 SOL does NO error checking on tlie FORTRAN code that appears
within a FORTRAN block. Thus, if you make a FORTRAN coding
mistake it will not be caught by the SOL compiler, but should
be detected when the FORTRAN output of the SOL compiler is
compiled using the FORTRAN compiler.

FORTRAN blocks cannot appear before the start of the main program header,
or an error will result.

FORTRAN block delimiters, /" and *, MTJST bcgin i n coliirriii one cif a SO!,
program or an error will result.

Macro calls SHOULD NOT be used inside a FORTRAN block -- only FORTRAN
code should appear in a FORTRAN block (See Appendix C). IIowever, FORTRAN
blocks can be part of a macro's replacement text.

FORTRAN blocks CANNOT appear inside a n ASSEMBLAGE or COMPONENT state-
ment.

4)

5)

6)

7)

In general, it is best to abide by the following guidelines:

0 write each FORTRAN block delimiter on a line by itself, and write the FORTRAN
code between the delimiters.

Do not nest FORTRAN blocks inside of other SOL statements, such as DO loops
or IF statements. Keep FORTRAN blocks at the main program or subroutine
level.

FORTRAN blocks should ONLY be used to access variables initialized in the
main program or subroutine implementation BEFORE the FORTRAN block
appears; local variables should not be accessed.

Columns are significant in FORTRAN, so space carefully inside your FORTRAN
blocks. Be sure to indent correctly inside the FORTRAN block.

0

0

0

.

Statements 6-25

EXAMPLES:

Example 1:
PROCRAH ftn-block
! l o t i c e t h e de l imi te rs start i n column one, and t h e FORTRAN
! block accesses previously i n i t i a l i z e d non-local var iab les only.
! This is t h e safest way t o use FORTRAI blocks. The FORTRAN code
! produced by t h e compiler w i l l need t o be “l inked“ by t h e
! programmer t o t h e ex terna l subroutine RAIDOM, c a l l e d
! i n what follows.

DECLARE
IPTECER seed

EPD DECLARE
seed = 1777
number = 0
/*

*
p r i n t number
end ftn-block

CALL RAPDOM(seed, number)

Example 2:
PROGRAM ftn-block
! l o t i c e t h a t t h e FORTRAN block accesses a u n i t i a l i z e d var iab le ,
! This is not a good way t o use FORTRAN BLOCKS. I n f a c t ,
! because of t h e oay SOL’S var iab les work, t h e
! v a r i a b l e “number” i s not i n i t i a l i z e d ins ide t h e I F
! statement .
DECLARE

IITEGER seed
E I D DECLARE

seed = 1777
I F (seed . g t . 0) THEN
/*

*
ELSE

CALL RAIDOM(seed, number)

number = 0
ENDIF
end ftn-block

FORTRAN blocks should be avoided if possible.

0 SOL does NO ERROR CHECKIKG on FORTRAN cotic> introdriced by FORTRAN
blocks.

FORTRAN I,locks SIIOULI) NOT be used to accc‘ss local viiriablcs, or to ini-
tialize variables.

Thus, FORTRAN blocks are sufficiently dangerous to be off-limits for t h c novice. Experi-

e

enced SOL users should utilize FORTRAN blocks only when necessary.

Statements 6-26

ADVANCED MATERIAL: HOW TO INTERFACE WITH A FORTRAN ROUTINE

c

There are two ways to interface SOL with a FORTRAN routine: use a call to an external
subroutine, or put the body of the FORTRAN block inside a SOL subroutine implementation.
Both of these methods are described in detail in the text that follows.

I. EXTERNAL FORTRAN ROUTINES:
External FORTRAN routines are written and compiled separately, and then “linked” to

the FORTRAN object code produced by the SOL compiler. The external routine is called from
within a SOL program through the use of a FORTRAN call statement in a SOL FORTRAN block.
The two example programs given earlier use this technique to call an external subroutine
named RANDOM. Thus, to use an external subroutine in a SOL program, the following
procedure should be employed:

1) \\.”rite the SOL program.

Make sure all SOL variables that are to be used or altered by the exter-
nal FORTRAN routine are NON-LOCAL and INITIALIZED BEFORE THE
FORTRAN block. (This is a very IMPORTANT step)

Invoke the FORTRAN routine in the SOL program, using a SOT, FORTRAN block
that contains a FORTRAN CALL statement.

Compile the SOL program, using the SOL compilcr.

Link the compiled SOL program with the “Linksol” Command Procedure;
the “Linksol” command procedure prompts for the names of any external
FORTRAN subroutines. (See Chapter 1, section 1.2 for details).

The external routines need to be compiled separately (creating an “.obj”
files) BEFORE they can be linked with the compiled SOL program.

2)

3)

4)
5)

0

11. USING THE BODY OF A FORTRAX ROUTINE INSIDE A SOL ROUTINE

This method is a little more complicated than the first techniquc~, but requires less fussing
with the linker, and has the advantage of keeping a SOL program self-contained, with all of
the code in a single source file.

As the basis for discussion of this method, the following SOL program accomplishes the
same task as the earlier examples, but does not use an external subroutine call.

Statements 6-27

Example 3:
PROGRAU ftn-block
! Weed to declare the subroutine in the declaration section

DECLARE
INTEGER seed
SUBROUTIBE (seed-out : INTEGER, number) = Random (seed-in : INTEGER)

END DECLARE

seed = 1777
! calling the routine as a SOL subroutine call
(seed, number) = Random(seed)
PRIIT number

EBD ftn-block

! The subroutine implementation. It is especially important
! to initialize all dependent variables BEFORE accessing them in a FORTRAN block

SUBROUTINE (seed-out : INTEGER, number) = Random (seed-in : INTEGER)
! Generate a random number using the linear congruential Method, D. Lehmer (1949)
DECLARE
/*

INTEGER Multiplier, Increment
REAL*8 nodulus

*
EHD DECLARE
number = 0
seed-out = 0
/*

nodulus = 65536.0
nultiplier = 25173
Increment = 13849
seed-out = MOD((multiplier*seed-in+Increment), INT(Modu1us))
number = seed-out/Modulus

*
END Random

Thus, take the following steps to include the body of a FORTRAN routine as a SOL routine:

Declare a SOL subroutine in the dcclaration section with the same parameters
as required by the FORTRAN routine, use SOL subroutine calls to call the SOL
subroutine, and include it in the siihroutine iniplcnicntation section.

Define t h e typcs for local FORTRAN variables using ii FORTRAN block in a SOL
Declaration sect ion.
Initialize all dependent variables AFTER the declaration section, but BE-
FORE a second FORTRAN block (step 5)) containing the body of the FORTRAN
routine. (VERY IhlPORTANT)

1)

2)

3)

.

Statements 6-28

Make sure types will agree with all FORTRAN statements :
0

0

0

REAL is equivalent to REAL*8
INTEGER is equivalent to INTEGER.
LOGICAL is equivalent to LOGICAL.

Use a second FORTRAN block to include the body of a FORTRAN routine as the
statement section of a SOL routine.

Caution: Make sure the FORTRAN block alters any dependent parameters,
unless you want the values defined in 3) above to be returned.

END the SOL subroutine.

Run the SOL compiler and linker as normal, unless FORTRAN code from the
block requires special linking for external subroutines and so forth.

111. USING THE SOL COMPILER OUTPUT AS AN AID TO FORTRAN BLOCKS:
Perhaps the easiest way to see the effects of a FORTRAN block is to examine the FORTRAN

output from the SOL compiler. This is especially helpful to make sure that things appear
in the correct column. However, making changes to the FORTRAN output is STRONGLY
discouraged. It is better to make a change in the SOL source and recompile. In this way,
the more readable SOL source code accurately reflects what occurs when the program runs.

Statements 6-29

Chapter 7
I Sizing: Assemblages and Components

ASSEMBLAGE and COMPONENT statements facilitate sizing, a type of engineering systems
modeling. In this manual: sizing is defined as the modeling of a system as the simple s u m
of i t s parts with respect to some special sumrnan’zafion variables. For example, an airplane
can be modeled and sized for weight; we model the major parts of the airplane, its systems
and structural components, along with the interaction between the parts. The model is
constructed so that the weight of the entire airplane can be determined by summing the
weight of its parts. the systems and structural weights. Likewise the weight of any part of
the airplane can be determined by summing its parts. In this case, “weight” is considered a
simple summarizat ion variable. SOL aids the modeling of such “assemblages;” by allowing
the user to create such models. and automatically computing the necessary summations.
In addition to simple summarization variables, SOL also offers r.rpression summarization
variables, discussed subsequently in section 7.1.1.1 of this chapter.

e The ASSEMBLAGE statement models the whole structure, such as the airplane
above.

The COMPONENT statement models subsystems and structures of an ASSEM-
BLAGE, such as the airplane’s wings, fuselage and landing gear. By nesting
COMPONENTS inside other COMPONENTS and inside the ASSEMBLAGE, the whole
structure can be modeled and sized.
Simple summarization variables are automatically summed by SOL to yield
correct totals for parts and subsystems (represented by COMPONENTS), and
the whole structure (represented by the ASSEMBLAGE).

The simple summarization variables for an ASSEMBLAGE or a COM-
PONENT which does not contain nested COMPONENTS MUST be ex-
plicit ly initialized.

Expression Summarization variable values are also computed automatically
by SOL for each COMPONENT or ASSEMBLAGE. but espression summarization
Lrariahles are not summed like simple sumniarization variables.

Section 7.2.1.1 of this chapter dctails cxpression suinmarization
variables.

An extended ideiztzfier notation allows variables in ASSEMBLAGES and COMPO-
NENTs to be accessed. The notation distinguishes among various COMPONENTS
so that, for example, the weight of a wing 1)os is distinguished from the
weight of an insulation system.

0

0

0

0

0

0

Siting: Assemblages and Componen,ts 7-1

EX AM PL ES :

The following code fragment models an airplane wing as consisting of‘ striictural and
clcctricill systcrii coriipowrit,s. A singlc siiriiiiiilrix;il,ioii wi~iaI)lc, w, is tlc-cl;irc*cl 1.0 s i x I , I I O wiiig
for weight. The values of the component surninarizatioii variables are sumriled automatically
to yield the total weight of the wing. The last line prints the total weight (179000 + 5000 in
this case) of the ASSEMBLAGE using extended identifier notation (Chapter 7 , section 7.1.2).

ASSEMBLAGE Wing (0 , ’ ’1
!
SUHMARIZE

The Summarization Section appears below

P

EID SUHURIZE

! The Structural Component of the wing
COMPOlEBT Structure (1 , ’ ’1

w = 179000
END Structure

! The Electr ica l system Component of the wing
COHPONEIT Electr ica l (I, ’ ’1

w = 6000
END Electr ica l

END Wing
PRINT oQWing

This chapter is divided into the following sections which detail ASSEMBLAGE and COMPO-

..’y ,
7.1 - Offers an overview of the ASSEMBLAGE and COMPONENT definition statements,

addressing their syntax, simple and expression summarization variables and
extended identifier notation.

NENT usage:

7.2 - Scope rules for ASSEMBLAGE and COMPONENT statements.

7.3 - ADVANCED hfATERIAL on ASSEMBLAGE and COMPONENT iteration.

7.1 .ASSEMBLAGES A Y D CO1,IPONENTs

The syntax of ASSEMBLAGE and COMPONENT statements is nearly identical. There are only
two differences:

0 ASSEMBLAGES h a v e a (Suniiriarizatioii) Declaration s c ~ . l i o t i , where sim-
ple arid expression sumniarization variables arc. dcdarcd. Siiice COMPONENT
statements can ONLY appear inside an ASSEMBLAGE, COMPONENTS inherit their
ASSEMBLAGE’S summarization variables.

COMPONENTS have an optional (Iteration) section, whcre iteration vari-
ables can be declared (See Chapter 7, section 7.3). Iteration variables for an
ASSEMBLAGE appear inside the ASSEMBLAGE (Summariza tion) Declaration
section, so a separate iteration section is not required.

0

Sizing: Assemblages and Components 7-2

The ASSEMBLAGE statement has the following syntax:
ASSEMBLAGE (name) ((indentation) , (row label))
(Summarization)

(Body)
END (name)

The COMPONENT statement I i x the following synt,ax:

COMPONENT (name) ((indentration) , (r o w label))
(Iterations)

END (name)
where (for both ASSEMBLAGES and COMPONENTS):

(Body)

(name) is a legal SOL identifier for the name of the ASSEMBLAGE or COMPO-
NENT.

e Extended identifiers cannot be used as either ASSEMBLAGE or
COMPONENT names.

(indentation) is a legal SOL number or the word TAB followed by a legal SOL
number. This provides information for SUMMARIZE print statements.

0 See section 7.1.1.3 of this chapter for more information.

(row label) is a legal SOL string, that consists of at least one character. Provides
informat ion for SUMMARIZE print statement.s.

e See section 7.1.1.3 of this chapter for more information.
e Note that the null string, ”, is not pcrmittcd.

(Summarization) declares simple and expression summarization variables (see Chap-
ter 7: section 7.1.1) and iteration variahlcs for the ASSEMBLAGE (see
Chapter 7, sections 7.1.1 and 7.3).

(Iterations) Iteration variables for COMPONENTS are declared in this OPTIONAL
section (see Chapter 7, sections 7.1.1 and 7.3).

(Body) is a series of one or more SOL statements.
e The use of FORTRAN Blocks inside an ASSEMBLAGE or COMPO-
NENT definition is KOT allowed. See Chapter 6, section 6.S for
more details.
e COMPONENT statements can only appear inside of an ASSEM-
BLAGE or another COMPONENT statement.
e ASSEMBLAGE statments CANNOT appear inside another AS-
SEMBLAGE or COMPONENT statement.

I. RESTRICTIONS ON ASSEMBLAGES A N D COMPONENTS:
The restrictions listed above for an ASSEMBLAGE or COMPONENT (body) must
be followed.

1)

Sizing: Assemblages and Components 7-3

The (name) at the start of the ASSEMBLAGE or COMPONENT must be the
same as the (name) used at the end of the ASSEMBLAGE or COMPONENT.
An ASSEMBLAGE or COMPONENT (name) cannot be an extended identifier.
The ASSEMBLAGE or COMPONENT header, consisting of the word, “ASSEMBLAGE”
or “COMPONENT;” the ASSEMBLAGE or COMPONENT (name) ; and summarize
print information enclosed in parenthesis, MUST appear alone on a line. If
the entire ASSEMBLAGE or COMPONENT header will not fit on a single line, the
continuation symbol, &, must be used. For further information, see Chapter
2, section 2.4.
An ASSEMBLAGE or COMPONENT definition statement CANNOT appear inside
an I F statement, or a SOL error will result.

An ASSEMBLAGE or COMPONENT definition statement CANNOT appear inside
a DO loop, or a SOL error will result.

ASSEMBLAGES and COMPONENTS are SOL blocks, illid ahidc3 I)y special scope
rules which determine how variables are initialized or accessed. See Chapter
7, section 7.2 and Chapter 11.
Other restrictions concerning the use of summarization variables and itera-
tion variables appear in Chapter 7, section 7.1.1 and Chapter 7, section 7.3
respectively.

2)

3)
4)

5)

6)

7)

8)

11. RESTRICTIONS ON ASSEMBLAGES ONLY:
.4t XlOST ONE ASSEMBLAGE statement can appear in the body of the main
program or a subroutine.
An ASSEMBLAGE statement CANNOT appear inside of a COMPONENT state-
ment; COMPONENTS are parts of an ASSEMBLAGE and not vice-versa.

1)

2)

111. RESTRICTIONS ON COhIPONENTs ONLY:
COMPONENT definition statements can ONLY appear inside of i t i t ASSEMBLAGE
or inside other COMPONENT definition statements.

COMPONENTS nested at the same level inside an ASSEMBLAGE or another COM-
PONENT CANNOT have the same name (or there could hc no way of distin-
guishing between them).

1)

3-1

Legal Illegal

ASSEMBLAGE a (0, ’ ’)
SUMMARIZE

END SUMMARIZE
COMPONENT same (0, ’ ’)

x = 2
END same
COMPONENT d i f f (0, ’ ’>

x = 2
END d i f f
END a

X

ASSEMBLAGE a (0, ’ ’1
SUMMARIZE

END SUMMARIZE
COMPONENT same (0, ’ ’)

x = 2
END same
COMPONENT same (0, ’ ’)

x = 2
END same
END a

X

Sizing: Assemblages and Components 7-4

7.1.1 SUMMARIZATION VARIABLE DECLARATION

Each ASSEMBLAGE MUST have an associated set of simple summarization variables, which
represent the sizing information (such as weight) associated with the ASSEMBLAGE. Each AS-
SEMBLAGE can also have an OPTIONAL associated set of expression summan’zation variables:

Summarization variables are declared in the Sumniarization Declaration sec-
tion of an ASSEMBLAGE (Described subscqucntly).

Each COMPONENT that makes up the ASSEMBLAGE initializes local copies of the
simple summarization variables (See Chapter 7, section 7.2 for scope rules).
Expression summarization variables are initializtd autonint ically when an
ASSEMBLAGE or COMPONENT ends.

If an ASSEMBLAGE or COMPONENT contains COMPONENTS nested within it, the
‘‘inner’’ COMPONENT’S simple summarization variables arc summed automati-
cally to yield a total value for the “outer” ASSEMBLAGE or COMPONENT.
If an ASSEMBLAGE or COMPONENT does NOT contain COMPONENTS nested within
it, its simple summarization variables MUST be explicitly initialized (i.e.
with assignment statements or subroutine calls).

0

0

0

0

0

The summarization declaration section of an ASSEMBLAGE has the following syntax:

SUMMARIZE
(summarize decls)
(optional iterations)

END SUMMARIZE

where:

(summarize clcds) is the sct of summarization dcclarat ions. Wi t summarization
declarations end under ci t tier of tho following coritlitions:

0 The summarization declaration scction ends \vit 11 the words, END
SUMMARIZE

OR

0 if the (optional iterations) section lias heen supplied (See Chap-
ter 7. section 7.3), the summarization declaration section ends
when the word ITERATE appears.

(optional iterations) is an optional iteration section wliere iteration variables can bc
declared (sce Chapter 7, section 7 . 3) .

.A summarization declaration consists of one of the following:

A simple summarization variable dcclarat ion. (Scc (’liaptcr 7, section 7.1.1.1
for exact syntas).

An expression summarization variable declaration (Sec Chapter 7, section
7.1.1.1 for exact syntax).

A summary title declaration, used in SUMMARIZE print statements. (See
Chapter ’7. sections 7.1.1.2 and 7.1.1.3 for details).

A series of 1) and/or 2) and/or 3) separated by commas OR carriage returns.

1)

2)

3)

4)

Sizing: Assemblages and Components 7-5

0 density is an EXPRESSION summarization variable. The density of each
COMPONENT is computed automatically using the expression declared with the
variable, the wt/vol formula.

The density of the total Radio is computed automatically using the the
total Radio weight and volume (which were also computed automatically.

Note: The two local density variables are NOT summed to yield the total
density of the Radio.

0

Example 2: The following ASSEMBLAGE models a ballpoint pen sized for weight:

ASSEMBLAGE Pen (0 , ’ ’>
SUMnARIZE

ueight
EID SVMHARIZE

COMPONENT Cap (1, ’ ’1

END Cap
COMPONENT Shaft (1, ’ ’1

ueight = 3.44

weight = 1.322

COMPONEllT Plastic (2, ’ ’>

END Plastic
COHPONElJT Nib-and-Ink

ueight = 2.786
END Nib-and-Ink

END Shaft
END Pen

e The weight of the Shaft is automatically given the sum of the Plastic and
Nib-and-Ink COMPONENTS (6.226)
The weight of the ASSEMBLAGE is sirrdarily initialized wi th the sum of the
Shaft and Cap COMPONENTS.

e

7.1. 1. 1 Summarization Variable and Expression Variable Declarations: Syntax S: Restrictions

Simple summarization variables have the following syntax:

(id)
where:

(id) is a SOL identifier.
Expression summarization variables have the following syntax:

(id) = (arith expr)
where:

is a SOL identifier, representing an expression sunirnarization vari-
able.

(id)

(arith expr) is an arithmetic expression. See Chapter 4, section 4 .1 for details.

Sizing: Assemblages and Components 7-7

The following restrictions apply to the summarization declaration section:

1) The word SUMMARIZE MUST appear alone on a line.

Comments and blank lines CAN appear between the ASSEMBLAGE header and
the word SUMMARIZE.
Comments and blank lines CAN appear between the words SUMMARIZE and
END SUMMARIZE.
The (summarize decls) part CANNOT be empty. At least one summariza-
tion variable declaration MUST appear.

The use of simple and expression summarization variables is best shown by example. Ex-
amples illustrating the use of the summarization declaration section are given next, followed
by these three sections:

2)

3)

4)

Simple and expression summarization variable declaration; syntax and usage
restrictions 7.1.1.1

1)

2) Summary title declaration; syntax and usage restrictions 7.1.1.2

3)

.

Summarize print statements 7.1.1.3

E X A hl P L ES :

Example 1: An ASSEMBLAGE with two simple summarization variables and an expression
summarization variable:

ASSEMBLAGE Radio (0, ’ ’)
SUMMARIZE

ut, vol
density = at/vol

END SUMMARIZE

COMPONEHT Housing (1, ’housing’)
ut = 5000
v o l = 3000

END Housing

COMPONENT Knobs-n,Stuff (1, ’L.g’ 1
ut = 0.03 * 10000
vol = 30

END Knobs-n-Stuff
EHD Radio

In this example, a radio is modeled as consisting of a housing component, with the knobs
and electronics represented by a single component; the entire radio model is sized for weight
and volume.

0 w t and vol are SIMPLE summarization variables. The local w t and vol of
the two COMPONENTS are summed to yield the total Radio weight and volume.

Sizing: Assemblages and Components 7--6

RESTRICTIONS FOR SUMMARIZATION DECLARATIONS

1) Summarization variables are ALWAYS LOCAL.
0 If a previously initialized variable is used as a. summarization

variable, a local copy is made instead and a warning message
appears.

A summarization variable CANNOT be declared twice in the same declara-
tion section.

All summarization variables must be of type REAL. Since SOL variables are
REAL by default. no explicit declaration is needed.

EVERY summarization variable must be initialized in every ASSEMBLAGE or
COMPONENT Statement according to the following rules:

If COMPONENTS DO NOT appear in the body (See Chapter 7 , sec-
tion 7.1) of a given ASSEMBLAGE or COMPONENT, all simple sum-
marization variables in that ASSEMBLAGE or COMPONENT MUST he
explicitly initialized (e.g. via assignmentn staternent or subroutine
call).

If COMPONENTS DO appear in the body of a given ASSEMBLAGE
or COMPONENT, all simple summarization variahlcs in that ASSEM-
BLAGE or COMPONENT are automatically initialized and explicit
initialization is ILLEGAL.
Expression summarization variables CANNOT be explicitly ini-
tialized under any circumstances, and are ALWAYS computed
automatically when the ASSEMBLAGE or COMPONENT ends.

2)

3)

4)

1.

..
11.

...
111.

Since automatic initialization takes place when the COMPONENT or ASSEMBLAGE
ends (cases ii. and iii. above) , automatically initialized variables CANNOT
be accessed until after the COMPONENT or ASSEMBLAGE ends.

After a COMPONENT or ASSEMBLAGE ends, local variables such as summarization
variables can be accessed (but NOT altered) via extended identifier notation
(See Chapter 7, section 7.1.2).

7) Only two types of variables can be used in arithriiet ic ex1)ressions for sum-
marization expression declarations:

0 Previously initialized variables.
I,e<qal 1lleg;il

some-var = 12
ASSEMBLAGE Demo (0 , ’)) ASSEMBLAGE un in i t a l i zed (0, ’ ’>
SUMMARIZE SUMMARIZE
a a
b = some_var/2 b = some_var/2
END SUMMARIZE END SUMMARIZE

Siting: Assemblages and Components 7-8

0 Previously declared summarization variables.
Legal Illegal

ASSEMBLAGE Demo (0, ’ ’> ASSEMBLAGE not-declared-yet (0, ’ ’
SUMMARIZE SUMMARIZE
a b = a/2
b = a/2 a
END SUMMARIZE END SUMMARIZE

Recall that summarization and summarization expression variables arc declared in the
summarization section of an ASSEMBLAGE. Both the ASSEMBLAGE hcader and summarization
section are shown in the examples:

Example 1: Five simple summarization variables (a , b, c , d , e) and two expression
summarization variables (f , g) are declared.

ASSEMBLAGE example (0, $1
SUWARIZE

a , b

d , e , f = a/b
g = a + c - e + f

C

EID SUHMARIZE

Example 2: A simple summarization variable, a, and an expwssion summarization variable,
b, are declared.

PROCRAH Demo

ASSEMBLAGE t r i a l (0. ’ ’>
SUMMARIZE

a , b = a * * 2
END SUMMARIZE

COMPONENT t e s t (1, ’ ’1
a = 5

END t e s t

COMPONENT t e s t -2 (1, ’ ’>
a = 6

END t e s t -2

p r i n t ba t e s t : F3.0
EIID trial

p r i n t ac0trial : F3.0
p r i n t b e r i a l : F3.0
E I D Demo

Sizing: Assemblages and Components 7-9

P

This program produces the following output:

25.
11.

121.

The following table lists the values for the summarizat,ion variables and explains how
the values were computed.

Table 7-1
SSV = “Simple Summarization Variable”
ESV = “Expression Summarization Variable”

\’ar

a
-

a

a

b

b

b

COASPONENT Type Value
- -

t e s t ssv 5

t e s t 2 SSV 6

t r i a l ssv 11

t e s t ESV 25

test-2 ESV 36

t r i a l ESV 121

How value was derived

explicitly initialized sirice t e s t
has no subCOMPONENTs

explicitly initialized since test-2
has no subCOMPONENTs

computed automatica,lly by SOL;
equals sum of the summarization variables
for subCOMPONENTs, t e s t and
test-2. (5 + 6 = 11)

computed automatically by SOL;
equals the summarization expression
evaluated with local summarization
variables. (a = 5, b = a ** 2 = 2.5)

computed automatically by SOI,;
equals the summarization exprcwion
evaluated with local su~nniarizat,ion variables.
(a = 6, b = a ** 2 = 36)

computed automatically by SOL;
equals the summarization expression
evaluated with local summarization variables.
(a = 11. 1) = a ** 2 = 121

e The print statements use cxtended idcntifcr notation. (Sce Cliapter 7, section
7.1.2 for details).

The synibol, 42, should be rcact as “of the.” For cxamplc, bOtest should be
read as, ”variable b of the tes t component.”

The print statements will display the following values, in order from first to
last: 25, 11, and 121, which represent “the value of variable b of the t e s t
component,” “the value of variable a of the t r i a l assemhlage,” and “the
value of variable b of the t r i a l assemblage” respectively.

e

e

Sizing: Assemblages and Components 7-1 0

Example 3: Two simple summarization variables, a and c, and an expression summarization
variable b are declared. Note: this example illustrates the use of a global variable to declare
an expression summarization variable.

PROGRAH Demo2
global = 2

ASSEHBLAGE t r i a l (0, ’ ’>
SUlMARIZE

a , c , b = global ** 2
END SUHHARIZE

c

COHPONEIT t e s t (1, ’ ’1
a = 5
c = l

ERD t e s t
COHPONEIT tes t -2 (1, ’ ’1

global = 3
a = 6
c = 2

EID t e s t -2

print betest : F2.0
END t r i a l

print a@test@trial : F2.0
print cOtrial : F2.0
print bOtrial : F2.0

END Demo2

This program produces the following output:

4 .
5 .
3 .
9 .

The following table lists the values for the summarization variables arid explains how
the values were computed.

Sizing: Assembluges and (hnponents ‘7- 11

Table 7-2
SSV = “Simple Summarization Variable”
ESV = “Expression Summarization Variable’’

VU

a
-

a

a

C

C

C

COMPONENT Type Value How value was derived

test ssv 5 explicitly initialized since t e s t
- -

has no subCOMPONENTs

test-2 SSV 6 explicitly initialized since t e s t -2
has no sub COMPONENTS

t r i a l ssv 11 computed autoniatically by Sol , ;
equals sum of the siiiiiiiiarizatiori variables
for subCOMPONENTs. t e s t and t e s t - 2 .
(5 t 6 = 11)

t e s t ssv 1 explicitly initialized since test is
has no subCOMPONENTs

t e s t -2 ssv 2 explicitly stated since test-:!
has no subCOMPONENTs

t r i a l ssv 3 computed automatically by SOL;
equals sum of the summarization variables
for subCOMPONENTs, t e s t and t e s t - 2 .
(5 t 6 = 11)

b test

b t e s t 2

b t r i a l

ESV 4 computed automatically by SOL;
equals the summarization expression evaluated
with the current value of global .
(global = 2, b = global * * 2 = 4)

ESV 9 computed automatically by SOL;
equals the summarization expression evaluated
with the current va.lue of global .
(global = 3, b = global ** 2 = 9)

ESV 9 computed automatically by SOL;
equals the summarization expression evaluated
with the current value of global .
(global = 3, b = global ** 2 = 9)

0 The print statements use extended identifer notation. (See Chapter 7, section
7.1.2 for details).
The symbol, Q, should be read as “of thcb.” For cxaniple, bOtest should be
read as, ”varialile b of the t e s t component.’’

0

Sizing: Assemblages and Components 7-12

The print statements will display the following values, in order from first
to last: 4, 5 , 3, and 9, which represent Uthc value of variablc b of the test
component, (‘the value of variable a of the t e s t component of the t r i a l
assemblage,” ‘(the value of variable c of the t r i a l assemblage,” and “the
value of variable b of the t r i a l assemblage” respectively.

Example 4: The example contains a compilation error because of a violation of rule 4 (iii.)
of the restrictions on summarization variables. (Restrictions appear in this Chapter and
section, just before the current “examples” section.)

PROGRAM D e m o 3

ASSEMBLAGE tr ial (0 , ’ ’
SUMMARIZE
a
b = a * * 2

END SUIIHARIZE

COHPOPENT t e s t (1, ’ ’>
a = 5
b = 14

END t e s t

COHPONENT tes t -2 (1 , ’ ’>
a = 6

EBD t e s t -2
END trial
END D e m o 3

A compilation error occurs inside COMPONENT t e s t . The statement, b =
14, is ILLEGAL because b is an expression summarization variable and
CANNOT he explicitly initializc>d.

Sizing: Assemblages and Components 7-13

Example 5: This example contains a compilation error because of a violation of rule 5 of
the restrictions on summarization variables. (Restrictions appear in this chapter and section,
just before the current “examples” section).

PROGRAM Demo4

ASSENBLAGE trial (0 , ’ ’1
SUnnARIZE

a
b = a * * 2

EHD SUnHARIZE

COMPONENT t e s t (1, ’ ’1
a = 5

EHD t e s t

COHPOIiEIiT t e s t -2 (1, ’ ’1
a = b * 6

ElOD tes t -2
print bQtest

END trial

END Demo4

e An error occurs inside COMPONENT t e s t - 2 . The statement, a = b * 6 is
ILLEGAL, because the summarization expression variable b of COMPONENT
t e s t2 is not initialized until the COMPONENT ends.

The summarization expression variable initialized in COMPONENT test is a
local variable, and CANNOT be accessed from COMPONENT test-2 unless
extended identifier notation is used. (See section 7.1.2 for details on extended
identifier notation).

e

7.2.1.2 Summar-v T i t l e Declarations - Advanced Material

The S u m m a r y - T i t l e declaration initializes a header title for SUMMARIZE PRINT state-
ments.

e 11 S u m m a r y - T i t l e declaration call appear i i i the Sum~nari/ation declaration
section of an ASSEMBLAGE.

A S u m m a r y - T i t l e declaration is OPTIONAL; it neccl NOT appear in thc
Sun-marization clcclaration section of an ASSEMBLAGE.

More information on summarize print st aterncrits can he found in section
7.1.1.3.

e

e

Sizing: Assemblages and Components 7-14

A Summary-Title declaration has the following syntax:
SUMMARY-TITLE = (string)
where:

(string) is a SOL string, consisting of a string of characters enclosed by a.pos-
trophes.

0

0

A string cannot be longer than 61 characters.

The string must appear on a single line. T h e continuation symbol,
&, CANNOT be used to split a string over two lines.

The following restrictions apply to Summary-Title declarations:

1) An empty (null) (string) such as *’ is illegal.

Summary-Title declarations appear in the siimniarization declaration section
of an ASSEMBLAGE, and must be separated from summarization variables by
commas OR carriage returns. For example:

2)

Legal Ulegal

ASSEMBLAGE Demo (0, ’ ’> ASSEMBLAGE Demo (0, ’ ’)
SUMMARIZE SUMMARIZE
summary-title = ’Demo Title’ summary-title = ’Demo Title’ w
W

END SUMMARIZE END SUMMARIZE

ASSEMBLAGE Demo (0, ’ ’) ASSEMBLAGE Demo (0, ’ ’)
SUMMARIZE SUMMARIZE

END SUMMARIZE END SUMMARIZE
summary-title = ’Demo2 Title’, sum-var summary-title = ’Demo2 Title’ sum-var

3) The Summary-Title declaration must appear on a single l inc . If it will not fit,
the continuation symbol, SC, must be used. For further details, see Chapter
2, section 2.4. For example:

Legal Illegal

ASSEMBLAGE Demo (0 , ’ ’) ASSEMBLAGE Demo (0, ’ ’)
SUMMARIZE SUMMARIZE

k ’use the continuation symbol’

END SUMMARIZE END SUMMARIZE

summary-t it 1 e =

w , e = w * 2 w , e = w * 2

summary-t it le =
’your decl is illegal without it’

Chapter 7, section 7.1.1.3 details the use of the summarize print statcment.

Sizing: Assemblnges and Components 7-15

7.1.1.3 Summarize Print Statement - Advanced Material

An understanding of ASSEMBLAGES and COMPONENTS, detailed earlier in this chapter, will
make this section more understandable

0 The SUMMARIZE print, stat,cmcnt, allows tliv qiiick, aiicl coiic-isc priii1,irig of
ASSEMBLAGE or COMPONENT si1 iiiiiiilr imt ioii vari i l l) Ics.

The SUMMARIZE print statement prints summarization vari;thl(.s in a tabular
form, along with a header message indicating whether the ASSEMBLAGE has
ended.

Each row in the table contains the values for a requested ASSEMBLAGE variable.
Options allow a title for the table and/or row labels to be specified.

Rows can be indented to reflect COMPONENT nesting within the ASSEMBLAGE,
or for emphasis.

0

0

0

0

GENERAL USE AND SYNTAX OF THE SUMMARIZE PRINT STATEMENT
The SUMMARIZE print statement has the following syntax:

SUMMARIZE (printlist)
where:

(printlist) is the list of variables to be printed, and corisists of one of the fol-
low i n g :

1) a simple summarization variablc, or expressioii summarization
variable.
Example: SUMMARIZE a-summar ize-var i ab1 e

Recall that summarization variables must be declared in the sum-
marize declaration section. (See chapter 7, sections 7.1.1 and
7.1.1.1 for greater detail on summarization variable declarations)

2) a simple summarization variable or expression summarization
variable, followed by a colon, :, followed by a format.
Example: SUMMARIZE a-sum-var :

3) a mixed sequence of the two choices above, separated by com-
mas.
Examples:

(format)

SUMMARIZE a-var, another : (format) , a - th i rd
SUMMARIZE a :
(format)

(format,) , b : (forrrial,) , last :

0 In the examples above, the word, (format) , appears where an actual format
would appear. (Formats are discussed in Chapter 6, section 6.2.2).

Since summarization variables are always of type REAL, only E and F formats
are legal with SUMMARIZE print statements.

0

The following restrictions apply to SUMMARIZE print statements:

Variables used in SUMMARIZE print statements must be summarization vari-
ables.

1)

Sizing: Assemb1ngc.s and Components 7-16

2) No comma can appear after the last item in a print list.

You must use a format that is compatible with the variable printed. See
Chapter 6, section 6.2.2 for details on formats.

Print lists must appear on the same line as the word, SUMMARIZE.

3)

4)
0 If the print list is too long to fit on the line, use the continuation

symbol, &, continue the list on the nest line. See Chapter 2,
section 2.4 for details on the contiriiiat,ion sytnhol.

5) Print lists can be NO LONGER than 20 items.
SUMMARIZE print statements are only legal if at least one ASSEMBLAGE or
COMPONENT statement has ended before the SUMMARIZE print statement.

6)

The following is an example of an ASSEMBLAGE statement, illustrating the use of the

01 PROGRAM example
02
03 ASSEMBLAGE One(0, ’the name one’)
04 SUMMARIZE
05 a, b
06 END SUMMARIZE
07 COMPONENT Two(TAB 1, ’the name two’)
08 a = l
09 b = 2
10 END Two
11 COMPONENT Three(TAB 1, ’the name three’)
12 a = 2
13 b - 3
14 END Three
15 END One
16 SUMMARIZE a : f 4 . 2 , b : f 4 . 2
17 END example
The SUMMARIZE print statement on line sixteen results i n the followiiig output at the

SUMMARIZE print:

terninal:

SUMHARY STATEHENT

NO TITLE DECLARED IN SUMMARY-TITLE
A B

THE BAHE TWO 1 .oo 2.00
THE BAHE THREE 2.00 3.00

THE NAME ONE 3.00 5.00

The explanation of the examplc:

0 The first thing printed is the table header, “SUMMARY STATEMENT .” If the
SUMMARIZE print statement appeared before the ASSEMBLAGE had ended, the
table header would have been, “PARTIAL SUMMARY STATEMENT. ”
A blank line appears next, which is then followed by the table title. As
no title was declared, the default, “NO TITLE DECLARED IN SUMMARY-TITLE,
appears. (See Chapter 7. section 7.1.1.2)

0

Sizing: Assemblages and Co,mponents 7-17

0 The column headers appear next, automatically labeled with the names of
the summarization variables that will be printed.

The summarization variables for the first COMPONENT ended (COMPONENT ends
at line 10) appear next.

The row is labeled with the string declared in the COMPONENT definition, ' the
name t w o ' (Line 7). The label is idcnted one tal, (f i v ~ spaws). This was also
specified by TAB which appears before the lal->vl in t h COMPONENT definition
(Line 7). The values of the variables follow.
The indented label and the values for the next COMPONENT follow.

Values of the ASSEMBLAGE summarization variables are then printed. This
row is not indented as specified by the dcfinitiori (on line 3, the number
0 specifies zero spaces). Because of the lack of indentatiorl, the values for
the summarization variables are not aligned with those of tile previous two
COMPONENTS.

0

0

0

0

0 A title can be declared in the SUMMARIZE section of an ASSEMBLAGE (See
section 7.1.1.2 of this chapter) that will be printed with the table of summa-
rization variable values generated by a SUMMARIZE print.

0

0

If no title is explicitly declared, the default title will be used.

The default title is, NO TITLE DECLARED IN SUMMARY-TITLE.
LABELING AND IDENTING TABLE ROiVS

Identation information must be given for the table rows produced by a SUMMARIZE print

Each row of a SUMMARIZE print table states an indented label, followed by the
values of the requested summarization variables for a particular ASSEMBLAGE
or COMPONENT.
Indentation and labeling instructions are given at t h e start of a n ASSEMBLAGE
or COMPONENT.

statement. A label for each row of a SUMMARIZE print table must also be specified.

0

0

The start of an ASSEMBLAGE has the following syntax:

ASSEMBLAGE (name) ((identation) , (astring))

The start of a COMPONENT definition has the following syntax:

COMPONENT (name) ((identation) , (astring))
where (ASSEMBLAGES and COMPONENTS) row labeling information is given 1)y (astring) and
(indentation) :

(name) is a legal SOL identifier which names the ASSEMBLAGE or COMPONENT.
(indentation) is a legal SOL number or the word TAB followed hy a legal SOL

nu nib er .
0

0

Specifies how many blank spaces to indent (a-string) .
If the word TAB a.ppears, the number specifies how many tabs
(where a tab is five blank spaces) to indent.

numbers less than or equal to -1 will result in tlic row not being
included in the table.

0

Sizing: Assemblages and Components 7-18

0 numbers are treated as INTEGERS and truncated. e.g. 1.9 becomes
1 and .999999 becomes zero. Only digits before the decimal point
are significant.

(astr ing) is a legal, non-null SOL string.

0

0

Row labeling information is given in (astring) .
The label specified in (astring) will appear in the leftmost
position of the table row.

If no label is desired, use a space string, ’ ’. The null string, ” ,
is not allowed.

0

7.1.3 EXTEKDED IDENTIFIER NOTATION

Extended Identifier notation is used to access the values of variables initialized within
an ASSEMBLAGE or COMPONENT:

0 Once an ASSEMBLAGE or COMPONENT has ended, the values of any variables
initialized within the ASSEMBLAGE or COMPONENT can be accessed through
SOL’S extended identifier notation.

Chapter 7 , section 7.2 details the scope rules governing variable initializations
within ASSEMBLAGES or COMPONENTS.

0

The extended identifier notation has the following syntax:

(identifier) @ (path name)
where:

(identifier) is a legal SOL identifier

(path name) specifies where the desired variable was iiiitialized ill the ASSEMBLAGE.
This (path name) consists of either of the following:

1) an ASSEMBLAGE or COMPONENT name
2) an ASSEMBLAGE or COMPONENT name, followed by the
symbol 42 followed by another (path name)

Extended identifiers describe a ”search path,” expressing the desired variable’s location
in the hierachy of an ASSEMBLAGE and its COMPONENTS. The ASSEMBLAGE is considered the
OUTERMOST level, COMPONENTS directly inside the ASSEMBLAGE comprise the next most
outer level, COMPONENTS directly inside COMPONENTs inside the ASSEMBLAGE are the third
most outer level and so forth.

0 The symbol @ means “of the.“ I;or exaniplc ‘‘weiglit~Flaps@ Wing” should
be read as, “the weight of the Flaps of the IVing.“ This wading makes clear
which variable is being accessed.

Sizing: Assemblages and Components 7-19

0 A search for the variable begins with the right-most name in the (path
name) . The search differs slightly depending on where the extended iden-
tifier reference appears, as follows:

The extended identifer reference appears inside an ASSEMBLAGE
or COMPONENT:
Thc search proceeds “outwards,” (from the rcfclciice through the
hierarchy towards the ASSEMBLAGE l cvc l) . ‘1’11~ scwcli coiitini1c.s
through the ncsted levels of COMPONENTS, checking the COMPONENT
names at each level, until a matching COMPONENT or ASSEMBLAGE
name is found. If the name is found, the search continues inwards
from the matching COMPONENT or ASSEMBLAGE analagous with ii.
(which follows), otherwise an error occurs.

A partial “path name” can be used, only the minimum length
extended identifier that uniquely identifies a variable is required.

If the extended identifier reference appears outside the ASSEM-
BLAGE, the search moves from thc ASSEMBLAGE illwards, matching
the rightmost name in the “path name” with the ASSEMBLAGE
name, the next rightmost name with a COMPONENT nested in the
ASSEMBLAGE, the next name matches a COMPONENT nested in the
COMPONENT in the ASSEMBLAGE and so on until the desired variable
is found. If the variable is not found, an error occurs.

The full “path name” MUST be used in this case.

1.

0

..
11.

0

0 SOL’S extended identifier notation is best explained with the aid of the
example which follows.

Siring: Assemblagcs and Co.mponents 7-20

EXAMPLES :

Example 1: The following ASSEMBLAGE models an egg, and illustrates the use of SOL’S
extended identifier notation. (Some statements have been anndated to aid the discussion.)

PROCRAH Component-Demo

ASSEMBLAGE egg (0, ’ ’1
SUWARIZE

protein, weight
EllD SUHMARIZE

protein-factor = .33

COMPONENT Yolk (1, ’)
weight = 1.9
protein = weight * protein-factor

END Yolk

print WaightQYolkOegg
print weightOYolk

COMPONENT White (1, ’ ’1
weight = 1.3
protein = weight * protein-factor

END White

print weightOWhiteQegg
print weightWhite

END egg

print protein-f actoreegg
print weight@yolk@egg
print weighteegg
END Component-Demo

! 1)
! 2)

! 3)
! 4)

! 5)

! 7)
! 6)

The extended identifier notation is used in six print statements which write out the
following values:

Print St atemen t Variable A messed RI?,Il, Nuniber Valiie Printed

“weight of the Yolk of the egg”
“weight of the Yolk”
“weight of the \\'bite of the egg”
“weight of the \\‘hitee’
“proteinfactor of the egg”
“weight of the yolk of the egg”
*’weight of the egg”

1.9
1.9
1.3
1.3
.33
1.9
3.2

Sizing: Assemblages and Components 7-21

a Print statements 1) and 2) print the same value. Recall that if an extended
identifier reference appears INSIDE an ASSEMBLAGE or COMPONENT, only the
minimum length extended identifier is required.

Print statements 3) and 4) are analgous to statements 1) and 2) .

Notice that the complete “path name” must be given in statements 5), S) ,
and 7).
The final print statement writes the value, 3.2. Because ASSEMBLAGE sim-
ple summarization variables are initialized with the sum of the appropriate
simple summarization variables from its subCOMPONENTs. In this case, the
“egg” COMPONENT has two subCOMPONENTs - - “Yolk” and “White” - so that
the “weight of the egg” equals “the weight of the Yolk” plus “the weight of
the White,” 1.9 + 1.3 = 3.2.

a

a

a

The following restrictions apply to SOL’S extended identifiers:

1) An extended identifier cannot appear on the left side of an assignment state-
ment, or be passed as a subroutine dependent parameter. For example, the
following is ILLEGAL:

weight6egg = 12

2) Extended identifiers can only be used to access variables that were initialized
inside of an ASSEMBLAGE or COMPONENT.

Extended identifiers CANNOT be used to access variables before the vari-
ables have been initialized. (In particular, summarization variables of AS-
SEMBLAGFs or COMPONENTs which have nested sub COMPONENTs CANNOT be
accessed until the summarization variables are automatically initialized when
the ASSEMBLAGE or COMPONENT ends.)

3)

7.2 SCOPE RULES FOR ASSEMBLAGES AND COMPONENTs

ASSEMBLAGES and COMPONENTs abide by the special scope rules. Because COMPONENT
statements are oftcn nested, it is useful to have terminology with which to distinguish the
relationships among COMPONENTs to aid a discussion of scope rules. The following definitions
are used:
Complete COMPONENT

- a COMPONENT whose body contains NO COMPONENT definition statements.

Composite COMPONENT

- COMPONENT whose body contains AT LlLIS1’ ONE COMPONENT definition
statement.

Encompass

1) An ASSEMBLAGE ENCOhlPASSes all COMPONENTs within it.

IF a Composite COMPONENT contains the COMPONENT definition statement for a
second COMPONENT, the first COMPONENT is said to ENCOMPASS the second.

2)

Sizing: Assemblages and Components 7-22

IF a Composite COMPONENT contains a sequcncc of nested COMPONENT defiiii-
tion statements, the composite COMPONENT is said to ENCOMPASS any and
all members in the sequence.

3)

Outer COMPONENT

- A term used to describe the relationship between COMPONENTS. ALL COMPO-
NENTS that encompass a COMPONENT statement are OUTER to that COMPO-
NENT. (The ASSEMBLAGE is by definition OUTER to all COMPONENTS).

Inner COMPONENT

- .4ll COMPONENTS that a Composite COMPONENT encompasses are INNER to
the Composite COMPONENT. (All COMPONENTS are by definition INNER to the
ASSEMBLAGE).

SubCOMPONENT

- A term used to describe the relationship betwcen COMPONENTS. All COMPO-
NENTS whose definition statements appear IhlhIEDl ATELY inside a COM-
POSITE COMPONENT or ASSEMBLAGE are subCOMPONENTs o f the composite
COMPONENT or ASSEMBLAGE. For example:

C O W O B E N T one (1, ’ ’1
C O H P O I E I T T w o (2 , ’ ’>

COMPONENT Three (3 , ’ ’>

END Three
S U m - V a I = 2

END T w o
COMPONENT Four (2 , ’ ’>

END Four
sum-var = 6

END one

0 In this example, subCOMPONENTs Two and Four appear immediately inside
COMPONENT one, b u t COMPONENT T h r e e is NOT a subCOMPONENT of COMPO-
NENT one COMPONENT Three is a subCOMPONENT of COMPONENT Two.

0 t 1ic.r COMPONENT

- A term used to describe the relationship between COMPONENTS. All COMPO-
NENTS which are neither an ISNER nor an OIJTER COMPONENT to a COMPO-
NENT. are called OTHER components.

Sizing: rlssernblnges and Components 7-23

SCOPE RULES FOR ASSEMBLAGES AND COMPONENTS:
Accessing or Altering Variables:

An ASSPiBLAGE or COMPONENT can access and alter variables which have been
initialized in the MAIN program or SUBROUTINE implementation before
the ASSEMBLAGE or COMPONENT statement appeared, For example:

1)

c = 24
outer-var = 12
ASSEMBLAGE t e s t (0, '1
SUMMARIZE

END SUHXARIZE
sumqarize-var

rurmqarize,var = outer-var + 12/c ! access c and outer-var
out er ,var = 42 ! a l t e r outer-var

Em t e s t

0 A warning message flags when an outer scope's variable is al-
tered by an ASSEMBLAGE or COMPONENT such as the alteration to
outer-var in this example.

2) An INNER COMPONENT can access and alter:

i. Any variables initialized in the ASSEMBLAGE and OUTER COMPO-
NENTs, if the variables are initialized BEFORE the inner COMPO-
NENT appears.

A warning message flags when an outer scope's variable is altered.

An ASSEMBLAGE or COMPONENT can ACCESS but NOT ALTER variables
ipitialized in INYER or OTHER COMPONENTS.

0

3)

i. Access using extended identifier notiition. (SCP (' I i ; i p t , c ~ 7, sectiori
7.1.2).
The INNER or OTHER COMPONENT variable must be initialized
before it is accessed.

i'ariables initialized in an ASSEMBLAGE or COMPONENT can be ACCESSED but
NOT ALTERED by main program or subroutine statements:

..
11.

4)

i, Access with extended identifier notation. (See Chapter 7, section
7.1.2)

Initial iz i n g Va ri ab les :

Simple summarization variables and Expression sunimarization Variables are
AL\\IAYS local. Every ASSEMBLAGE or COMPONENT accesses and initializes a
local summarization variable.

When an ASSEMBLAGE or COMPONENT initializes a variable, a variable l,OCAIJ
to that ASSEMBLAGE or COMPONENT is initialized. This local variable can be
accessed or altered outside the ASSEMBLAGE or COMPONENT ONLY by the rules
above.

1)

?I

Sizing: Assemblages and Components 7-24

0 Note: Variables are only initialized the first time they receive a
value. Therefore, local variables are NOT created when an AS-
SEMBLAGE or COMPONENT assigns a value to an existing variable.
The exceptions, of course, are summarization variables (see sec-
tions 7.1.1 and 7.1.1.1 of this chapter) because these variables are
ALWAYS local.

EXAMPLES :

Example 1:
01 PROCRAH example
02
03
04
05
06
07
08
09
10
11
12
13
14

a = 6
ASSEHBLACE p i e (0, ’ ’1
SUMMARIZE

cost
END SUMMARIZE

cost = a + 1
a = 15
a = a + 2
print a

EID p i e
print cost Op i e
print a

15 END example

li‘hat does the print statement on line 11 print?

0 On line 9, a is given the value, 15 and then incremcnted by two on line 10.
Therefore, on line 1 1 thc value, 17 is printed.

\Vhat does the print statement on line 13 print?

0 On line 8, the summarization variable cost is given the value a + 1. The
variable a has the value 6 (from line 3) at that point, so cost is assigned the
value 7, and 7 is printed.

U\’hat does the print statement on line 14 print?

0 The assignment statements on lines 9 and 10 haye altered the main program
\-arial,le, a,. so the value 17 is printed.

4

Sizing: Assemblages and Components 7-25

Example 2:
01 PROGRAM example-2
02
03
04
05
06
07
08
09
10
11
12
13
14
15
l e
17
18
I 9
20
21
22
23
24
25

factor = 13
ASSEMBLAGE one (0, ’ ’1
SUMMARIZE

a , b, coat = a * b
END SUMMARIZE

factor = 11
an-error = aOtwoQone
COMPOIENT two (I, ’ ’ 1

a = factor + 2
b = a + factor
factor = 10

END two
COMPONENT three

a = factor + cost@twoQone
b = bQtwo0one
factor = 3

END three
print factor

END one
PRINT aQtaoQone
PRIIT bQthreeQone
PRIIT aOthreeOone

26 END example-2

The rule numbers that appear in the discussion that follows refer to the rules for accessing
and initializing variables that appear immediately before this “examples” section.
One error occurs in this program, Where is it?

0 An error occurs on line 10. An ASSEMBLAGE can access an variables initialized
in subCOMPONENTs, with extended identifier notation but only AFTER the
variables have been initialized (as per rule 3 (i i) of Scope rules for accessing
and Altering variables). COMPONENT two has not ended, so the summariza-
tion variables are not yet initialized and Line 10 is ILLEGAL. For the next
questions, assume line 10 is removed so the program runs.

What value is printed on line 21?

0 f a c t o r has been altered on lines 14 and 19 in accordance with rule 1, The
assignment on line 19 is the most recent, therefore the value 3 is printed.

What value is printed on line 2:3?

0 The two COMPONENT’S summarization variable a is assigrietl its value on line
12. The variable f a c t o r is referenced as per rule 1, and the value 11 is
returned. Thus, aQtwo gets the value “11 + 2,” and the value 13 is printed.

What value is printed on line 2/4?

Sizing: Assemblages and Components 7-26

0 The three COMPONENT’S summarization variable b is assigned its value on
line 18 to have the same value as COMPONENT two‘s summarization variable
b. The value of the two COMPONENT’S summarization variahlc b is set on l inc
13 t,o be “13 + 11” or 24. Thus, the valiic 21 is I)riiit,<d.

What value is printed on line 25 ?

0 The three COMPONENT’S summarization variable a is assigned its value on line
17. COMPONENT two has changed the value of fac tor to be “30” (line 14).
COMPONENT two’s summarization variables a and b have the values “13” arid
“24” respectively as seen in the previous two print statements. Because the
cos t of COMPONENT two is an expression summarization variable, its value is
computed automatically as a * b = 13 * 24 = 312. Thus, f a c t o r + 312 =
10 + 312 = 322, and the value 322 is printed.

i . 3 .AD\’-ASCED M.ATERI.4L - ASSEXIBLAGE A N D / O R COMPONEST
ITERATION

The Iterations section of an ASSEMBLAGE or COMPONENT allows you to give initial values to
A S Y krariables LOCAL to the COMPONENT or ASSEMBLAGE, such as summarization variables.
The initial values are used before the variables get final values later i l l the ASSEMBLAGE or
COMPONENT body.
Motivation: It is not always possible to create a sizing model where the sizing information
can be handled in a linear fashion. The values for summarization variables of an ASSEMBLAGE
are computed automatically to be the sum of the corresponding summarization variables
of all nested subCOMPONENTs and are inherently linear. However, in some cases it would be
helpful to define a subCOMPONENT’s summarization variable in tcrms of another variable, such
as an outer COMPONENT or ASSEMBLAGE summarization variable. For example, in modeling
aircraft, the landing gear is often modeled as a fixed percentage of the total vehicle gross
weight. The vehicle weight would be a summarization variable for the ASSEMBLAGE, and the
weight of the landing gear would be a summarization variable of a siibCOMPONENT.

Normally, such a model is not possible, because the total gross weight would not be
initialized until the ASSEMBLAGE ended. The Iterations section allows proper modeling for
these cases.
The iteration section for an ASSEMBLAGE is optional; when supplied the iteration section
appears inside the ASSEMBLAGE summarization declaration section (A s tlctailed in Chapter
T i , section 7.1)’ and has the following syntax:

ITERATE
(iterations)

For example:
ASSEMBLAGE Test (0, ’ ’>
SUKHARIZE

a, b
ITERATE

a = 12
EID SUMMARIZE

- -v

Sizing: Ass f In blages and Coniponents 7-27

0 The iteration section ends when the summarization declaration section ends
with the words END SUMMARIZE.

The iteration section for a COMPONENT is optional; when supplied the iteration section appears
immediately after the COMPONENT header (As detailed in Chapter 7, section 7.1), and has the
following syntax:

ITERATE
(itc*ra.tions)

END ITERATE

For example:
COHPOIEIOT T e s t (0 , J ,
ITERATE

a = 12
END ITERATE

where (for both ASSEMBLAGES and COMPONENTS):

(iterations) is one of the following:

1) (id) = (expr)
2) (id) = (expr) : (no)
3) (id) = (expr) : (no) %
4) MAX-ITERATIONS = (expr)

5)
or more carriage returns.

a series of 1) and/or 2) and/or 3) and/or 4) separated by one

(id)

(expr)

(no)

is a SOL identifier; the variable to be initialized.

is an arithmetic expression for the initial value.

is a SOL number giving the convergence criteria.

The following restrictions apply to the (iterations) section, when it appears:

1) (id) must be a legal SOL identifier.
(id) CASNOT be a previously initialized variable, it MUST BE local
to the COMPONENT w h i c h iterates. Since all variables initialized within a
COMPONENT are local variables. any WNINITIALIZED variable can be used,
including summarization variables.

(id) MUST BE INITIALIZED within the COMPONENT that declares the iter-
ation. Initialization can be explicit (e.g. an assignment statement or subrou-
tine call) or implicit (such as the automatic initialization of summarization
variables of COMPONENTS as the sum of suhCOMPONENT local summarization
variables).

If no Max-iterations is explicitly given, a default. value of fifty (50) is used.
If iteration stops because Max-iterat ions is exceeded, a run-time error
message will appear.

4)

Sizing: Assemblages and Components 7-28

If no CONVERGENCE criteria is given, i.e. '': (no))) or '': (no) %,"
then a default absolute convergence criteria of 1 IS used.

5)

7.3.1 HOW ITERATION WORKS

In what follows, all bracketed items refer to the iteration section syntax described in the
previous section.

The initial value for the variable is calculated in the (expr) part of an
(iterations) section.
The iteration variable can now appear in inner COMPONENT calculations.

The iteration variable MUST be assigned (explicitly or implicitly) a new
value in the COMPONENT or ASSEMBLAGE that defined the itcration.

At the end of the ASSEMBLAGE or COMPONENT that initiated iteration, the new
value of the iteration variable is compared to the value from the previous
itera tion.

A convergence criteria defines whether the new/previous comparison will end
the iteration or whether the new value will be used as the initial valiie and
the process repeated. This repetition is called iteration.
A convergence criteria is either ": (no))) (ahsolute convergence) or ":
(no) % .' (relative convergence). If nothing appears, a default absolute
convergence criteria, with (no) = 1 is used.

absolute convergence: When the difference between the previous value
and the new value of the summarization variable is less than or equal to
(no) , the iteration halts.

relative convergence: When the previous value changes less than or equal
to the percentage, " (no) %" then the itcration halts.

Max-iterations places a further limit on the number of iterations allowed;
the compare/repeat process will continue at most max-iterations times. If
the Convergence criteria is not satisfied at that poilit, iteration halts and an
error message is output.

Sizing: Asserri blngcs and Components 7-29

EXAMPLES:

Example 1:
PROGRAH plane
!
! Demonstrater i terat ion
!
ASSEHBLAGE g-ut (0, Jail')
SUMMARIZE

ITERATE

END SWHARIZE

u t , v01, av-density = ut/vol

ut = 10000:0.5 % ! i t era te on ut

COHPOIEPT wing (1, ’wing’ 1
a t = 5000
vol = 3000

END wing

COMPONENT Landing-gear (I , ’L . g
ut = 0.03 * d0g-ut
vol = 30

END Landing-gear

END g-ut
END plane

This example shows a landing gear modeling problem discussed earlier. Landing-gear is
a subCOMPONENT of G-ut, but tlic value of its summarization variable, ut , is a function of thc
ut of the ASSEMBLAGE G-ut, which is uninitialized until autornatically iriitializcd with tllc
sum of its nested COMPONENTS. The initial value of WtcDG-wt is given in the iteration section
“ ut = io000 : 0 . 6 % .” The iteration statement can be read as, “use 10000 as the initial
value for wtcDG-wt in any calculation inside of G-wt .” The calculation of w t 9 G - w t will repeat
until it changes less than 0.5 9% in consecutive iterations.

Siting: Assemblages and Components 7-30

Chapter 8
The Optimize Statement

The OPTIMIZE statement acts as a sophisticated shell about the ADSt numerical opti-
mization routine. Recall that one of SOL’S purposes is to make the computer implementa-
tion of a numerical optimization problem as simple and error-free as possible. The OPTIMIZE
statement permits the methods of numerical optimization implemented in the ADS opti-
mization routine to be applied within a SOL program. The OPTIMIZE statement is combined
with other SOL statements to pose an optimization problem; the resulting SOL program is
compiled, linked and run to solve the posed problem and output the results.

This chapter discusses the OPTIMIZE statement syntax and use, with a minimal but
necessary prior exposure to the concepts of numerical optimization assumed.

The OPTIMIZE statement has the following syntax:
OPTIMIZE (minimized variable)
USE

(design variables & constraints)
(Options Section)

(SOL statements)
END USE

END OPTIMIZE
where:

(minimized variable) is a legal SOL identifier, but CANNOT be an ex-
tended identifier.

ADS - A FORTRAN Program for Automated Design Synthesis - Version 1.10, NASA
Contractor Report 177955, Grant NAG1-567, 1955 by G.N. Vanderplaats

The Optimize Statement 8-1

(design variables & constraints) section is one of the following:

I

(Options Section)

1) a design variable declaration
2) a constraint declaration
3) A series of design variable declarations or con-
straint declarations separated by one or more carriage
returns.

0 At least one design variable must appear in the
USE section. The exact syntax for both 1) and 2)
is given in sections 8.1 and 8.2 of this chapter.

contains the optional settings for t,he optimizer, al-
lows the user to specify a choice of optimization al-
gorithms, to normalize design variables, to request
output of optimization results, and to change default,
parameters of the ADS optimization routine. The
optional settings are discussed in detail in section 8.3
of this chapter.

(SOL statements) consists of one or more SOL statements. The objec-
tive function, (minimized variable) , and constraint
functions are defined in this section.

The following restrictions apply to the OPTIMIZE statement:

The reserved word, OPTIMIZE and the (minimized variable) MUST appear
alone on the same line. If they will not fit on a single line, the continuation
symbol, St. must be used. For more information, see Chapter 2, section 2.4.
The reserved word, USE, must appear alone on a line.

The reserved words, END USE, must appear alone on the same line, and must
be separated by at least one space (i.e. ENDUSE is illegal).

The reserved words, END OPTIMIZE, must appear alone on 1 he same line, and
must be separated by at least one space.

The (minimized variable) and the constraint variables (see section 8.2
which follows) hZUST be initialized in the (SOL statements) section.
Design variables (see section 8.1 which follows) CANNOT be initialized or
altered in the (SOL statements) section.

Any legal SOL statement (See Chapter 6) can appear in thc (SOL state-
ments) section.

Note that other OPTIMIZE statements can appear to perform
nest Ed optimizations.

The (minimized variable) RIUST be a function of the design variables.
This function is specified in the (SOL statements) section of the OPTIMIZE
statement .
Values for the constraint variables RWST be specified in the (SOL state-
ments) section.

a

The Optimize Statement 8-2

0 The (minimized variable) is known as the objective function, and it is a
function of the design variables. In the example above, the variable f u n c t
represents the objective function of two design variables, x and y.

Design variables are stated in the (design variables & constraints) section.
By varying the values of the design variables, the value of the
objective function is also varied.

Bounds on the values design variables can also be given to define
the range of possible values. In the example, x and y are stated
as bounded design variables.
The OPTIMIZE statement includes initial values for the design
variables; the design variables of the example. x and y, are ini-
tialized to -1.2 and 1 respcctively.

Section 5.2 of this Chapter d e s c r i h design variables in greater
detail.

Constraints are stated in the (design variables & constraints section) .
Constraints provide additional criteria which must be satisfied, beyond the
goal of minimizing the objective function. For instance, we may want to
minimize the weight of an airplane wing, but with the constraint that the
wing cannot be too weak to withstand flight conditions. In the previous
example, a single variable c o n s t r a i n t represents the constraint function.

Like the objective function, constraints MUST be a function of
the design variables.

0

0

0

0

0

0

0

The OPTIMIZE statement poses the optimization problem, “mininlize the value of the
variable, (minimized variable) by varying the values of the design variables and satisfying
the constraints.” The description of an optimization problem with an OPTIMIZE statement
closely parallels the mathematical description of the problem, as seen in the following exam-
ple:

Example:

Mathematical description: SOL program:

Minimize: funct(x,y)
Subject to:

-20 5 1 5 50
o 5 y 5 1 0
constraint(1, y) = 5

OPTIMIZE f u n c t
US E

x = -1.2 IN [-20, 501
y = I IN EO, 101
c o n s t r a i n t .eq. 5

Where: END USE

f u n c t (r , y) = 10 * (9 - 12)2 + (1 - 2)2
constraint(z, y) = 5 * y

f u n c t = 1O*(y - x4*2)*42 + (I - x)**2
c o n s t r a i n t = x 4 y

END OPTIMIZE

Tlw Optiinix Statement 8-3

0 (ADVANCED MATERIAL) SOL constraint values are automati-
cally scaled by the SOL compiler and constraint values are stored
as a percentage of the constraint bound. If a particular constraint
bound is zero, that constraint is left unscaled (See Section 8.2.1
of this chapter for details).

The functions computing the (minimized variable) and the constraints
MUST be stated in the (SOL statements) section.

The OPTIMIZE statement invokes the optimizer to solve the problem of minimizing thc
(minimized variablc) The optimizer automatically varies tlic valucs of tlic clcsign VariiLbles,
increasing or decreasing the value of the (minimized variathlc) The optimizer finds the
values for the design variables which minimize the value of the (minimized variable) and
insures that all the constraints are satisfied. Some values for design variables may give a
mimimum value to the (minimized variable) , but are ruled out because all the constraints
cannot be satisfied with those values.

This Chapter is divided into the following sections:

0

1) Design Variable Declaration Syntax and Restrictions 8.1
2) Constraint Variable Declaration Syntax and Restrictions 8.2
3) Examples
4) The (options) section of an OPTIMIZE statement 8.3

8.1 DESIGN VARIABLE DECLARATIONS:

Design variable declarations, which appear in the (designs ft constraints) section of
an OPTIMIZE statement, have the following syntax:

(design var) = (initial value) IN [(lower bound) , (upper bound)]
where:

(design var) is a legal SOL identifier, and CANNOT be an extended identifier.

(initial value) is an arithmetic expression. See Chapter 4, 4. 1 for more information
on arithmetic expressions.

(lower bound)
(upper bound) are either arithmetic expressions, o r oiiiil ted. (they are optional;

both may appear, only one may appear, or neither may appear).
a A comma RlUST separate the upper and lower bounds even
when one or both of the bounds is excluded.

The following restrictions apply to design variable declarations:

Design variable declarations MUST be separated from othcr design variable
declarations or constraint declarations by one or more carriage rcturns.

1)

The Optimize Statement 8-4

2) Variables that appear in arithmetic expressions of (lower bound) , (initial
value) , and (upper bound) CANNOT be design variables. For example:

Legal Illegal

extra-var = 1 extra-var = 1
OPTIMIZE mini OPTIMIZE mini
USE USE

x = 1 IN I O y 21 x = 1 IN [O, 21
y = 1 IN [extra-vary extra-var + 41 y = 1 IN [x, x + 41

END USE END USE

The entire design variable declaration must appear alone on a single line. If
the declaration will not fit, then the continuation symbol h must be used.
For further details, see Chapter 2, section 2.4.
The following relationships must be true:

3)

4)
0 (lower bound) 5 (initial value)
0 (initial value) 5 (upper bound)
0 (lower bound) c (upper bound)

If the relationships above do not hold, a RUNTI;2IE error message will be
issued when your SOL program is executed. Such messages can only appear
at runtime because arithmetic expressions whose values are not known at
compile-time can be used for the bounds.

The (lower bound) and (upper bound) are calculated just once, in the
design variable declaration. Subsequent changes to the variables used in the
arithmetic expressions that compute the bounds will have no effect on the
values of (lower bound) arid (upper bound) .
It is illegal to alter or initialize a design variable inside an OPTIMIZE state-
ment. (Le. in tlie (SOL statements) part) The ADS optirnizer controls the
values of design variables.

Design variables must have unique names; two CANNOT have the same
name nor can a design variable have the same name as a constraint.

5)

6)

'i)

I 8.2 C 0 N S T RA I S T DE C LA RAT IO N S :

The constraint declaration, which appears in the (designs & constraints) section of the
OPTIMIZE statement. has the following syntax:

(constraint var) (relationship) (bound)
I

where: I (constraint var) is a legal SOL identifier, but CANNOT be an estcucled identifier

The Optimize Statement 8-5

(relationship) is one of the following:

.gt.

.It.

means the value of (constraint-var) MUST be greater
than the value of (bound)
means the value of (constraint-var) MUST be less than
the value of (bound)
means the value of (constraint-var) MUST be equal to
the value of (bound)

.eq.

(bound) is an arithmetic expression. See Chapter 4, section 4.1 for more
details on arithmetic expressions.

The following restrictions apply to the constraint declaration:

Constraint declarations MUST be separated from design variahle declarations
and other constraint declarations by onc o r mor(* carriage 1~~1, i i r r is .

Variables which appear in the (bound) expression CANNOT be design
variables.

Variables which appear in the (bound) expression MUST be initialized
BEFORE the constraint declaration.

The entire constraint declaration must appear alone on a single line. If the
constraint declaration will not fit, the continuation symbol, &, must be used.
For further details, see Chapter 2, section 2.4.
The (constraint var) MUST be initialized inside the (SOL statements)
section of an OPTIMIZE statement, or a SOL error results.

A (constraint var) CANNOT be accessed before it is initialized.
Constraint variable names must be unique; two constraint variables CAN-
NOT have the same name nor can a constraint variable and a design variable
have the same name.

1)

2)

3)

4)

5)

6)
7)

8.2.1 (ADVANCED MATERIAL) COKSTRAINT SCALING

SOL automatically scales constraint values as a percentage of the constraint limit (the

The scaling is transparent to the user; only THE ACTUAL UNSCALED
values are output to the user from a SOL program. Scaled values are used
internally within the ADS optimizer.
If a particular constraint limit is zero, then that particular constraint is left
u 11s caled .

(bound)).

e

e

The Optimize Statement 8-6

EXAMPLES :

The following example programs illustrate the OPTIMIZE statement and the declaration
of design variables and constraints. The examples are deliberately simplistic so that syntactic
and semantic details can be discussed without the complications of a a difficult optimization
problem .
Example 1:

OPTIHIZE area
USE

length = 5 IN c1. 103
width = 5 IN [l, 101

area = length * width
END USE

EBD OPTIMIZE
PRINT ’the length i s : J l length
PRINT ’the widith i s . , width
PRI lT ’the m i n i m u m area i s area

This example is trivial, but illustrative. The problem posed is to minimize the value of
the variable, “area.” Two design variables are provided, “length” and “width;” no Constraints
are provided. The two design variables are bounded with a minimum value of one, and a
maximum value of 10. The functional model states that, ”area equals length times width.”
The optimizer will vary the values of “length” and “width” until the minimum area is found.
In this case, the minimum area occurs when both the design variables are a t minimum. Thus
when the OPTIMIZE statement ends, the three print statements will print the following: “1,”
“1,” and “1.”
Example 2:

. I

OPTIMIZE area
USE

length = 5 IN E l , 101
width = 5 IN c l , 51
d i f f . eq . 2 . 5

area = length * width
d i f f = length - width

END USE

END OPTIMIZE
PRINT ’the length i s : J , length
PRINT ’the width i s : ’ width
PRIHT ’the minimum area i s :) , =ea

This example differs from the previous example in only one respect: the addition of the
constraint, “diff .eq. 2.5.” The *’diff” is the difference between the ‘Llength” and “width” as
calculated by the statement, “diff = lenuth - width.”

The “diff” constraint effectively limits the range of possible values for ‘‘length.’’ The
.4DS optimizer makes the values of “length” and “width” as small as possible, to minimize
the “area.” However, when “width” has a minimum value of “1,” the “length” cannot be
less than approximately “3.5” or the “diff” constraint would not be satisfied.

In this example, the optimizer varies the values of “length” and “width,” minimizing
the ‘Lareit” while at the same time satisfying the “diff” constraint. When the OPTIMIZE
statement ends, the three print statements will display the following: “1 ,” “3.4902,” and
“3.4902.”

9

The Optimize Statement 8-7

Note: The “diff” constraint is only approximately satisfied; the difference between
“length” and “width” is “2.5” in the exact solution. The variable, “diff,” only approximates
this exact value because the optimizer can only approximately satisfy constraints within
a certain level of tolerance. There is a default tolerance, and the SOL programmer can
adjust the tolerance through the (options) section. (See Chapter 8, section 8.3 for more
information on (options))

The level of tolerance acts regardless of the difficulty of the problem. A very complex
set of constraints from a difficult problem are satisfied with the same degrcc of prccisioii
as an easy problem. The optimizer approximately satisfied the “diff” constraint with the
difference between the “length” and “width” equal “2.4902,” very close to the exact value
“2.5.”

The OPTIMIZE statement may also be used to maximize a value, by minimizing the
negative value. For example, the following simple OPTIMIZE statement maximizes the area
of a rectangle:

Example 3:
OPTIMIZE neg-area
USE

length = 5 II [I, 101
width = 6 XI [I, 101

neg-area = -(length * width)
EHD

EHD OPTIMIZE
area = -neg-area

This concludes the OPTIMIZE statement examples. A more tutorial preseritation with
examples appears in “The Sizing and Optimization Language, SOL - - A Computer Language
for Design Problems,” NASA Technical Memorandum 100565, April 1988.

8.3 OPTIMIZE ST-4TEMENT (OPTIONS SECTION) (ADVANCED MATERIAL)

The OPTIMIZE statement’s (options section) allows the user to:

1) choose from a variety of optimization algorithms 8.3.1
2) print initial, intermediate, and final results of an optimization . . 8.3.2

3) normalize design variables to between zero arid one 8.3.3

4 change the default settings for the ADS optimizer routine usod by SOL. 8.3.4

0 The.
st at ement.

(options section) is optional; it need not a p p a r in a n OPTIMIZE

The Optimize Statement 8-8

When the (options section) appears, it has the following syntax:

OPTIONS

where:

(optional switches)

(optional switches) is one or more of the following:

1. (strategy, optimizer, or search setting) This allows the user
to select from a variety of optimization algorithms; a detailed
description appears in section 8.3.1 of this chapter.

..
11. (print results request) is a request to print the initial, interme-

diate or final results of an optimization; a detailed explanation
appears in section 5.3.2 of this chapter.

...
111. normalize This setting automatically normalizes the design

variables, as described in section 8.3.3 of this chapter.

iv. (ADS parameter settings) These settings allow numerous val-
ues used by the ADS optimization routine, such as the constraint
tolerance settings, to be altered to customize the optimization
process. ADS provides default values, so that these control pa-
rameters need only be accessed when absolutely necessary The
details are provided in section 8.3.4 of this chapter.

Each of the (optional switches) MUST appear on a line alone,
separated from other optional switches by one or more carriage
returns.

(options
section) to select an optimizer, strategy combination, normalize design variables, and output
some intermediate results (the design variable, constraint and SOL statement sections appear
as comments):
Example:

e

For example, the following OPTIMIZE statement illustrates tlie use of the

OPTIMIZE energy
USE

!

!
!

OPTIONS

Design variables and constraints would appear here

optimizer = modified feasible directions
strategy = sequential quadratic
normalize
print everything every iteration

END USE
!
! equations would appear here
!

EID OPTIHIZE

The Optimize Statement 8-9

The following rules apply to the (options section) :

1)

2)

The (optional switches) can appear in any order between the word OPTIONS
and the end of the USE section (indicated by the words END USE).

Any number of switches can be used.
0 If a switch is repeated, the last value given is used by the opti-

mizer. .

8.3.1 Strategy, optimizer and one-dimensional search settings (Advanced h/la.terial)

The strategy, optimizer and one-dimensional search settings can appear in the (OP-
TIONS) section of an OPTIMIZE statement. These settings allow the selection of an opti-
mization algorithm from those available within the ADS optimization software.

The strategy settings have the following syntax:

strategy = (strategy setting)
where:

(strategy setting) is one of the choices from table 8-1.
The optimizer settings have the following syntax:

optimizer = (optimizer setting)
where:

(optimizer setting) is one of the choices from table S-2.
The one-dimensional search settings have the following syntas:

search = (search setting)
where:

(search setting) is one of the choices from table 8-3.
The tables that follow list the possible strategy, optimizer and one-dimensional search set-
tings:

The Optimize Statement 8-1 0

~ ~~

Table 8-1: Strategy settings:

Strategy Setting

Hone

Exterior Penalty

Linear Penalty

Quadratic Penalty

Cubic Penalty

Lagrange Xultiplier

Sequential Linear

Inscribed Hyperspheres

Sequential Quadratic

Sequential Convex

Table 8-2: Optimizer settings:

Strategy Used

None, go directly to optimizer (D e j u d t Setting)

Sccliiviit.ia.l Iriic.oiisl.raiiic~(1 iiiiiiitiiimI ioii
using the cxterior penalty Itlnc.1 i o r i r r i c . 1 , h o t l .

Sequential unconstrained minimization
using the linear extended interior penalty function method.

Sequential unconstrained minimization
using the quadratic extended interior penalty function method.

Sequential unconstrained minimization
using the cubic extended interior penalty function method.

Augmented Lagrange Multiplier method.

Sequential Linear Programming.

Inscribed Hyperspheres (Method of Centers).

Sequential Quadratic Programming.

Sequential Convex programming.

Optimizer Setting

None

Fletcher-Reeves

DFP

BFGS

Feasible Directions

Modified Feasible Directions

Optimization Method Used

None. Go directly to the one-dimensional search.
(This method should only be used for program development)

Fletcher- Reeves algorithm for unconstrained minimization

Da\.~idon-Fletcher-Po~v~ll (D I T) variahlc metric method
for unconstraincd minirnizat ion.

Droyer-Fletcher-Goldfarb-Shanno (BFGS) niet hod for
unconstrained minimization. (Dclavlf: unconstrained problems)

Method of Feasible Directions (11lW) for
constrained minimization.

Modified Method of Feasible Directions for constrained
mini mi za t ion. (Defa ult : co ns t ru in ed pro b le ms)

The Optimize Statement 8-1 1

~ ~
~~ -

Table 8-3: One-dimensional search settings:

One-d Search Setting Search Method Used

Golden Sect ion

Golden Section + Interpolation

Find Bounds + Interpolation

Interpolat ion/Extrapolat ion

t

Find the minimum using the Golden Sectmion Method.

Find the minimum using tlie
Golden Section met hod followcd by polyrioniial interpolation

Find the minimum by first finding bounds and
then using polynomial interpolation. (Default Setting)

Find the minimum by polynomial interpolation/extrapolation
without first finding bounds on the solution.

SOL automatically supplies default settings for search, optimizer, and one-dimensional
search methods.
The default settings for constrained minimization are:

0 Strategy = None

0

0

Optimizer = Modified Feasible Directions

Search = Find Bounds + Interpolation
The default settings for unconstrained minimization are:

0 Strategy = None

0 Optimizer = BFGS (Broyer-Fletcher-Goldfarh-Shanno).
0 Search = Find Bounds + Interpolation

Recall that the (strategy, optimizer or search setting) appears within the (options
section) of an OPTIMIZE statement. The following example illiistrates the use of these
settings:

OPTIMIZE weight
USE

! Design variables and constraints commented out
OPTIONS

strategy = Lagrange Multiplier
optimizer = DFP
search = Golden Section

! optimization body commented out
END USE

END OPTINIZE

The Optimize Statement 8-12

As might be expected, not all combinations of strategy and optimizer settings are compat-
ible. Table 8-4 (paraphrased from "ADS - A FORTRAN PROGRAM FOR AUTOMATED
DESIGN SYNTHESIS - VERSION 1.10", NASA Contractor Report 177985, Grant NAG1-
567, 1985 by G.N. Vanderplaats) identifies meaningful combinations of these two options:

Table 8-4: Meaningful Option Combinations:

Strategy Fletcher-Reeves

lone
Exterior Penalty
Linear Penalty

Quadratic Penaly
Cubic Penalty

Lagrange Hult ip l i sr
Sequential Linear

Inscribed Hyperspheres
Sequential Quadratic

Sequential Convex

X
X
X
X
X
X
0
0
0
0

Optimizer
DFP BFGS

X X
X X
X X
X X
X X
X X
0 0
0 0
0 0
0 0

FD

X
0
0
0
0
0
X
X
X
X

Modified FD

X
0
0
0
0
0
X
X
X
X

0

0

0

The table pairs strategies with the optimizer selections.
In this table, "X" denotes an acceptable strategy and optimizer combination.
The appropriate (constrained or unconstrained) one-dimensional search is
selected automatically.

8.3.2 O U T P U T OF OPTIMIZATION RESULTS

SOL provides statements to request printing of the values of the objective function,
design variables, constraints, and termination criteria at user-selected points during the
optimization process. These (print results request) are placed in the OPTIONS section of
an OPTIMIZE statement.

0 The output produced by SOL (print results request) is integrated with
SOL'S OPTIMIZE statement.
Although an output capability already exists within ADS, by default SOL
suppresses the ADS output.
The ADS output can be accessed via the IPRINT parameter setting, outlined
in section 8.3.4 of this chapter.
By default, the final values of the objective function, design variables, and
all constraints are displayed at the termination of the optimization process.

0

0

0

The remainder of this section is divided in two parts:

1.

11.

discusses the syntax of the (print results request) that appears in the
OPTIONS section.

discusses the format of the output display produced by a print results request.

,

The Optimize Statement 8-13

c

I. PRINT STATEMENTS FOR O U T P U T OF OPTIMIZATION RESULTS
A (print results requests) has the following syntax:

PRINT (optim value) (time)
where:

(optim value) is the optimization result to be printcd, and can be one of the fol-
lowing:

object ive

design variables

v io lated constraints

ac t ive constraints

constraints

termination c r i t e r i a

everything

nothing

(t ime)

0

0

0

print the value of the objective function, the (minlmizzd
variable) .
print the values of the design variables.

print the values of violated constraints only.

priqt the values of active and violated constraints only.

print the values of all contraints.

print values of the internal ADS optimization software vari-
ables used to terminate the optimization; primarily useful
to the knowledgable user of ADS.
print the current values of the objective function, design
variables, constraints, and termination criteria.

negates ALL current print requests, including the default
settings. The (time) parameter CANNOT appear with
this setting.

specifies when to print during the optimization process.

The (time) parameter is optional; it need not appear. When
the (time) does not appear, the given (optim value) prints
when the optimization ends (i.e. at termination).

The (time) can be either a print time, or a series of print
times separated by commas. If a series will not fit on a single
line, the continuation symbol, &, must be used.
A print time is one of the following:

i n i t i a l l y

a t termination

every (expr) search s tep

(nothing). When the (time) does not appear, the
given (optim value) prints whcii the optimization
ends (i.e. a t termination).

print the value(s) for (optim value) at the start of
the optimization process.

print value(s) for (optim value) when optimization
ends.

print the value(s) for (optim value) on the (expr)

0 The (expr) parameter is an optional SOL expres-
sion, just as in the case of optimizer/strategy iteration
and is described in the next example).

iteration at the one-dimensional search level.

The Optimize Statement 8-14

every (expr) i t e r a t i o n print the value(s) for (optim value) on the (expr)
th iteration at either the strategy or optimizer level.
0 If a strategy is used, printing occurs at the strategy
level, otherwise printing occurs at the optimizer level.
0 The (expr) parameter optional. If the (expr)
parameter is not used, printing occurs on every itera-
tion.

0 When the (expr) parameter appears it is a SOL
arithmetic expression (See Chapter 4, section 4.1.1).

0 For example if no strategy is selected, print objec-
t i v e every 2 i t e r a t i o n specifies printing the value
of the objective function at every 2nd iteration of the
optimizer.

0 pr int object ive every 2/a i t e r a t i o n , where
2/a = 4 .7 at the time of the print request, specifies
printing the value of the objective every 4th iteration
of the optimizer.
0 The (expr) parameter is only evaluated once
(before the iterative optimization process begins) and
REAL values are truncated as in the last example above.

MULTIPLE PRINT REQUESTS:

0 Print requests are USUALLY cumulative, with each print request being added
to all previous print requests for that particular (optim value) .
HOWEVER, some print requests SUPERCEDE previous print requests. For
example:

0

PRIllT violated constraints every i terat ion, a t termination
PRIllT constraints a t termination

will result in the violated constraints being printed every i t e r a t i o n , but
all constraints will be printed a t termination because of the second re-
quest, which supercedes the previous request that only violated constraints
be output.
When print requests contradict each other, the most recent request su-
percedes all others.

o

EXAMPLES:

The example which follows illustrates the use of print requests to output optimization
results, with parts of the OPTIMIZE statement omitted and line numbers displayed for clarity:

The Optimize Statement 8-15

Example:
0 : OPTIHIZB weight
1 : USE
2 : ! Design variables and constraints would appear here
3 : OPTIOIS
4 : print objective i n i t i a l l y , every i terat ion,
S : k every search s tep
6 : print design variables every iteration
7 : print everything at termination
8 : ElID USE
9 :
10: END OPTIHIZE

The print requests appear on lines 4-7.

! The r e s t of the optimization statement goes here

0 The print request that begins on line 4 illustrates the use of commas and a
continuation symbol to specify a number of print times with a single print
request.
The (minimized variable) is weight (line 0), so that weight is the Objective
function and the print request on line 4 will display the value of weight.

The print request on line 7 is nearly superfluous) as the final values of the
objective, design variables and constraints are printed by default.

0

0

11. FORMAT OF OPTIMIZATION RESULTS OUTPUT

0 The format of the output produced by SOL print requests is integrated with
SOL language statements.
The format consists of a title header followed by one or more of the following: 0

1.

11.

111.

iv.

the value of the objective;

the values for all design variables;

the values for all or selected constraints;

the values for the appropriate termination criteria variables.

..

...

Caveat: Values displayed at the strategy, optimizer) and one-dimensional search level
are sometimes “incorrect.” This is because the ADS optimization software uses scaled and/or
normalized values at these levels. While the SOL output corrects for such scaling, the
correction logic is immature and scaled and/or normalized values are occasionally displayed
for the ohjcctive and constraints. The output format in no way affects the optimization
process itself, and in any event the final values displayed are always correctly unscaled and
denormalized. If this correction is not desired, the values internal to ADS are visible through
the use of the ADS parameter P R I N T as discussed in section 8.3.4 of this chapter.

Each part of the format is discussed subsequently, and an example of the output format
follows this discussion.

TITLE HEADER

The title header indicates the current point in the optimization process. The possible

OPTIMIZATION INITIAL VALUES

headers and associated points in the optimization process are as follows:

Initial values a t start of optimization process; initially setting.

The Optimize Statement 8-16

OPTIMIZATION FINAL VALUES
Final values at the end of the optimization process; at termination setting.

Values at the one dimensional search Ievel; every search s tep setting.

Values at the optimizer level; every i t e r a t i o n setting. The actual iteration number
is also displayed.

Values at the strategy level; every i t e r a t i o n setting when a strategy option has
been selected. The actual iteration number is also displayed.

This header is displayed at either the optimizer or strategy level just before termi-
nation; every i t e r a t i o n setting.

OPTIMIZATION ONE-D SEARCH STEP (no)

OPTIMIZATION ITERATION NUMBER (n o)

STRATEGY LEVEL ITERATION NUMBER (no)

FINAL ITERATION NUMBER (n o)

OBJECTIVE FUNCTION OUTPUT

The format for the objective function consists of the name of the SOL variable repre-
senting the objective, followed by an equals sign, = , followed by the current value of the
objective. The value displayed is the current value being used by the ADS software.

Caveat: Objective function values from the strategy, optimizer, or one-dimensional
search level are not always DISPLAYED “correctly,” especially when equality constraints
are used. The ADS software’s internal representations of the objective are occasionally
displayed, due to the immaturity of SOL’S output formatting. This does not affect the
optimization process and the final values are always correctly displayed.

DESIGN VARIABLES OUTPUT

The format for the design variables consists of the header Design Variables Output
followed by a tabular listing. Each table row consists of the name of the design variable, its
current value, and its bounds. In addition if a variable is at a bound, an exclamation point
is displayed at the far right of the row. Unlike the objective and constraints, the “correct”
values for the design variables are always displayed.

CONSTRAINTS OUTPUT

The format for the constraints consists of the header Constraints Output followed by
a tabular listing. Each table row consists of the name of the constraint, its current value, the
type of constraint (>, <, or =), its limit, and its current status (active, violated or satisfied).

Caveat: As with the objective function, values for the constraints are occassionally
LC incorrect,” * at the strategy, optimizer, or one-dimensional search level, as thc ADS software’s
internal representations are sometimes displayed clue to the immaturity of SOL’S formatting.
This does not affect the optimization process, and the final values are always correctly
displayed.

TE R M IN AT IO N C RIT ERI A OUT P UT

The termination criteria output simply displays the current values of the internal ADS
variables and appropriate messages. This output option is primarily useful to the knowl-
edgable user of ADS. The termination criteria format consists of the header termination
criteria, followed by the appropriate values and messages. If none of the termination
criteria are met, the header appears alone. The following are possible messages:

0 Maximum number of i t era t ions exceeddequals followed by the number
of optimizer or strategy iterations and the maximum allowable iterations.

The Optimizc Statement 8-1 7

0

0

0

0

0

0

Absolute convergence criteria i s s a t i s f i e d followed by the current
convergence criteria values.
Relative convergence criteria i s s a t i s f i e d followed by the current
convergence criteria values.
Kuhn Tucker Conditions are satisfied

Kuhn Tucker Parameter followed by the parameter value, <= , followed by
the parameter limit.

Maximum K-T Residual followed by the residual value, <= , followed by the
limit .
Penalty exceeded l i m i t followed by the penalty, >= , followed by the limit.
Penalty below l i m i t followed by the penalty, <= , followed by the limit.
Kuhn Tucker Parameter followed by the parameter value, >= , followed by
the parameter limit.
S vector value followed by the search vector value, <= , followed by the
limit.

EXAMPLES:

The following is an example of optimization output produced by a print request. The
title header indicates that the final results (at termination) are being displayed. Note the
exclamation point at the far right of the design variable inlet-pressure indicating it has
reached its bounds.

The Optimize Statement 8-18

Example:

.
OPTIUIZATIOI FIIAL RESULTS *

.

OBJ-FLOURATE - - 2.68346

*** DESIGI VARIABLES OUTPUT ***
.

DESIGI VARIABLE

PAIEL,FU)URATE
IILET-PRESSURE
PIE-E-0-D-PAPELI

CURRENT VALUE BOUNDS

= 2.6835 11 [2.500 , 10.00 1
= 4500 IN [1200. , 4500. I !
= 1.0972 11 c0.2000 , 6.000 1

*** COPSTRAIITS OUTPUT ***
.

COPSTRAIIT YAHE VALUE TYPE LIUIT STATUS

PIISTRESS-PAMEL1
HICROUIDTE,PAIELI
GAS-P-OUT

1.0000 SATISFIED 0.114363-01 <
0.540963-02 > 0.50000E-02 ACTIVE
-0.97#7#3+06 > 600.00 VIOLATED

8.3.3 NORhIALIZATION OF DESIGN k’ARIABLES

Design variables can be automatically normalized to the range 0 . . . 1 with the normalize
directive, which can only appear in the OPTIONS section of an OPTIMIZE statement. The
normalize directive has the following syntax:

normalize
The following equation was used for normalization. A design variable, dv = x IN [

lower, upper 1, is mapped to a new value, dv = XI IN [0 , 1] where:

I (5 - lower)
x =

(upper - lower)

For normalization to work properly, the following restrictions must be met:

1)
2)

The design variable’s lower bound MUST be less than the iipper bound.

The design variable’s initial value, x, must be within the range:

lower 5 x 5 upper.

0

3)

Runtime error checking ensures the previous two conditions above are met.

Lower and upper bounds MUST be given or a SOL error results.

The Optimize Statement 8-19

8.3.4 ADS PARAMETER SETTINGS

The ADS optimization software provides numerous parameters which can be set by
the user to change the optimization process. These parameters can be set from within a
SOL program, in the OPTIONS section of an OPTIMIZE statement. The parameter settling
cornrnands have the following syntax:

(id) = (expr)
where:

is a legal SOL identifier, and must be one of the ADS parameter
names. (See table 8-5 that follows for parameter names).

(id)

(expr 1 is an arithmetic expression. See Chapter 4, section 4.1.

0 One or more of these ADS parameter setting commands can appear between
the word OPTIONS and the end of the OPTIMIZE USE section.

The (id) identifies the ADS parameter, and the (expr) identifies the new
value for that parameter.

The following OPTIMIZE statement fragment illustrates the use of the OPTIONS section to
change the values of the ALAMDZ and IPRINT ADS parameters:
Example:

OPTIMIZE min-var
USE
x = 1 IN C2, 81

OPTIONS
ALAMDZ = 0.002
IPRINT = 1111

END USE
All ADS parameter information given originates in “ADS - A FORTRAN PROGRAM

FOR AUTOMATED DESIGN SYNTHESIS - VERSION 1.10”, NASA Contractor Report
177985, Grant NAG1-567, 1985 by G.N. Vanderplaats.

The tables that follow list the possible ADS parameter names, the meaning of the pa-
rameters, and the default settings of the parameters

The ISTRAT, IOPT and IONED parameters control the strategy, optimizer,
and one dimensional search settings respectively (Discussed in section 8.3.1
of this chapter, tables 8-1, 8-2, and 8-3.) There should be no reason to use
these three parameters since the SOL settings can be used to select strategy,
optimizer, and one-dimensional search algorithms.

0

Table 8-5: Optimization Parameters:

ALAMDZ Initial estimate of the Lagrange hlultipliers in tlie Augniented Lagrangc
hlult iplier Met hod.

AddditionaI steepest descent fraction in the method of centers. After moving
to the center of the hypersphere, a steepest descent move is made equal to
BETAMC times the radius of the hypersphere.

Minimum constraint tolerance for nonlinear contraints. If a constraint is
more positive than CTMIN, it is considered to be violated.

BETAMC

CTMIN

The Optimize Statement 8-20

DAB ALP

DABOBJ

DABOBM

DABSTR

DELALP

DELOB J

DELOBM

DELSTR

DLOBJl

DLOB 52

DX 1

DX2

EPSPEN

EXTRAP

FDCH

FDCHM

GMULTZ

ICNDIR

Absolute convergence criteria with
Golden Section Method.

one-dimensional search when using the

Maximum absolute change in the objective between two consecutive itera-
tions to indicate convergence in optimization.

Absolute convergence criterion for the optimization subproblem when using
sequential minimization techniques.

Same as DAROBJ, but used at the strategy Ic:vcl.

Relative convergence criteria for the one-dimensional search when using the
Golden Section method.

Maximum relative change in the objective between two consecutive iterations
to indicate convergence in optimization.

Relative convergence criterion for the optimization subproblem when using
sequential minimization techniques.

Same as DELOBJ, but used at the strategy level.

Relative change in the objective function attempted on the first optimiza-
tion iteration. Used to estimate initial move in the one-dimensional search.
Updated as the optimization progresses.

Absolute change in the objective function attempted on the first optimiza-
tion iteration. Used to estimate initial move in the one-dimensional search.
Updated as the optimization progresses.

Maximum relative change in a design variable attempted on the first opti-
mization iteration. Used to estimate the initial move in the one-dimensional
search. Updated as the optimization progresses.

Maximum absolute change in a design variable attempted on the first opti-
mization iteration. Used to estimate the initial move in the one-dimensional
search. Updated as the optimization progresses.
Initial transition point for extended penalty function methods. Updated as
the optimization progresses.

haasimum multiplier on the one-dimensional search parameter, ALPHA in
the one-dimensional search using polynomial interpolation/extrapolation.

Relative finite difference step when calculating gradients.

h4inimum absolute value of the finite difference step when calculating gradi-
ents. This prevents too small a step when a design variahlc is near zero.

Initial penalty parameter in Sequential Quadratic Programming.

Restart parameter for conjugate direction and variable metric methods. Un-
constrained minimization is restarted with a steepest descent direction every
ICNDIR iterations.

The Optimize Statement 8-21

.

.

IPRINT

I SCAL

ITMAX

ITRMOP

ITRMST

JONED

JTMAX

PMULT

PSAIZ

RMULT

RMVLMZ

A four digit print control. IPRINT =IJKL where I,J,K and L have the follow-
ing definitions.

I ADS system print control:
0 - No print.
1 - Print initial and final information
2 - Same as 1 plus parameter values and storage needs.
3 - Same as 2 plus scaling information calculated by ADS.

J Strategy print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus G at each iteration.
4 - Same as 3 plus intermediate information.
5 - Same as 4 plus gradients of contraints.

0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus constraints at each iteration.
4 - Same as 3 plus intermediate optimization and one-d search infor-
mation.
5 - Same as 4 plus gradients of constraints.

0 - No Print.
1 - One-dimensional search debug information.
2 - More of the same.

K Optimizer print control.

L One-dimensional search print control.

Scaling parameter. If ISCAL=O, no scaling is done. If ISCAL=l, the design
variables, objective and constraints are scaled automatically.

hlaximum number of iterations allowed at the optimizer level.

The number of consecutive iterations for which the absolute or relative con-
vergence criteria must be met to indicate convergence at the optimizer level.
The number of consecutive iterations for which the absolute or relative con-
vergence criteria must be met to indicate convergence a t the strategy level.
The one-dimensional search parameter (IONED) to be used in the Sequential
Quadratic Programming method at the strategy level.
hlaximum number of iterations allowed at the strategy level.
Penalty multiplier for equality constraints when IOPT=4 or 5.
hlove fraction to avoid constraint violations in Sequential Quadratic Pro-
gramming.

Penalty function multiplier for the exterior penalty function method. Must
be greater than 1.0.
Initial relative move limit. Used to set the move limits in squential lin-
ear programming, method of inscribed hyperspheres and squential quadratic
programming as a fraction of the value of a design variable.

The Optimize Statement 8-22

RP

RPMAX

RPMULT

RPPRIM

RRPMIN

SCFO

SCLMIN

STOL

THETAZ
XMULT

ZRO

Initial penalty parameter for the exterior penalty function method or the
Augmented Lagrange Multiplier method.
Maximum value of RP for the exterior penalty function method or the Aug-
mented Lagrange Multiplier method.

Multiplier on RP for consecutive iterations.

Initial penalty parameter for extended interior penalty function methods.

Minimum value of RPPRIM to indicate convergence.

The user-supplied value of the scale factor for the objective function if the
default or calculated value is to be over-ridden.

Minimum numerical value of any scale factor allowed.

Tolerance on the components of the caluculated search direction to indicate
that the Kuhn-Tucker conditions are satisfied.

Nominal value of the push-off factor in the Method of Feasible Directions.

Multiplier on the move parameter, ALPHA, in the one-dimensional search
to find bounds on the solution.
Numerical estimate of zero on the computer. Usually the default value is
adequate.

The following table gives the default values for the switches listed above.

The Optimix Stalement 8-23

Table 8-6: Optimizer Switch default values.
f0 = the value of the objective with internal design variables equal zero.
NDV = the number of design variables.

Switch Name Default Value

ALAMDZ
BETAMC
CT

CTMIN
DABALP
DABOB J
DABOBM
DABSTR
DELALP
DELOBM
DELSTR
DLOB J 1
DLOB 5 2

D X 1
DX2

EPSPEN
EXTRAP

FDCH
GMULTZ
ICNDIR
IPRINT
ISCAL
ITMAX

ITRMOP
ITRMST
JONED
JTMAX
PSAIZ
PMULT
RMULT

RMVLMZ
RP

RPMAX
RPMULT
RPPRIM
RRPMIN

SCFO
SCLMIN

STOL
THETAZ
XMULT

ZRO

0.0
0.0
-0.03 (If IOPTz4, CT =-0.l)
0.01
0.0001 (If IONED=3 or 8, DABALP=0.001)
ABS(fO) / 1000
ABS (f0)/500
ABS(fO)/ 1000
0.005 (If IONED=3 or 8, DELALP=0.05)
0.01
0.0001
0.1
1000.0
0.01
0.02
-0.05
5.0
0.01
10.0
ndv+l
1000
1
40
3
2
IONED
20
0.95
10.0
5.0
0.2 (If ISTRAT=9, RR.IVLMZ=O.4)
20.0
l.OE+lO
0.2
100.0
1 .OE- 10
1 .o
0.001
0.001
0.1
2.6 18034
0.00001

For further information about the use of’ these optimization switches, see “ADS--A
FORTRAN PROGRAM FOR AUTOMATED DESIGN SYNTHESIS - VERSION 1.10”,
NASA Contractor report 177985, Grant NAG1-567, 1985 by G.N. Vanderplaats.

The Optimize Statement 8-24

Chapter 9
Subroutines

Typically, a programming task can be decomposed into a ririniber of simpler subproblems.
Solutions to the subproblems are then combined to solve the main problem. In SOL, each
subproblem can be coded as a subroutine.
A SOL subroutine consists of the following:

1) A subroutine name;

2) Zero or more independent parameters (input parameters);

0 Independent parameters specify variables which will be used, but
NOT ALTERED by the subroutine.

3) Zero or more dependent parameters (output parameters);
0 Dependent parameters specify variables which will be altered or

initialized by the subroutine.

4)
5)

optional declarations to be used within the subroutine;

A body of code that performs the subroutine’s action;

0 In this way, a subroutine associates a name, with a set of parameters and a
body of statements.

To use a subroutine in a SOL program, do these three things:

Declare the subroutine in the main program declaration section. This step
is detailed in Chapter 5, section 5.2, and in section 9.1.1 of this chapter.

Implement the subroutine in the subroutine implementation section of your
SOL program. More details on subroutine implementation can be found in
section 9.1.2 of this chapter.

Use a subroutine call statement to invoke the subroutine. A detailed discus-
sion of the subroutine call statement can be found in Chapter 6, section 6.7,
and in section 9.1.3 of this chapter.

1)

2)

3)

This chapter is divided into three sections:

9.1 - Discusses subroutine declaration, implementation and calls.
9.2 - Discusses subroutine parameter passing conventions in detail.

9.3 - Discusses the scope rules that apply to subroutines.

Subroutines 9-1

9.1 SOL SUBROUTINES: DECLARATION, IMPLEMENTATION, AND CALLS

A SOL subroutine consists of three main elements:

1) Declaration:
0 The declaration that appears i n the main progrii ln gives the sub-

routine name, and describes input/output behavior in terms of
dependent and independent parameters. The SOL compiler car’
then check subroutine calls in the main program or subr0utni.r. i i r -
plementations, and compare these calls against the corresponding
declarations to insure the same number and type of parameters
are supplied.

2) Call:
0 The subroutine call allows you to invoke a subroutine, and sup-

ply it with ACTUAL parameters. The subroutine returns values
in the variables supplied as dependent parameters, by perform-
ing its action using the values of variables passed as independent
variables. The SOL compiler insures that the correct number and
type of variables are supplied as parameters. At runtime, if the
call matches the declaration, the code provided in the subrou-
tine’s implementation will be executed. Once the subroutine call
completes, the statement after the subroutine call is executed.

3) Implementation:
0 The subroutine implementation states the name of the subrou-

tine, the dependent FORMAL parameters and the independent
FORMAL parameters. The implementation MUST mirror the
number, order, and types of parameters specified in the decla-
ration section. The name of the subroutine must also be the
same. The implementation supplies the code that will perform
the subroutine’s action. The dependent variables must be al-
tered or initialized in this code, but error-checking insures that
the independent parameters cannot be altered.

This section is further divided into the following subsections detailing the elements of sub-
routines:

Subroutine declaration 9.1.1
Subroutine implementation 9.1.2

Subroutine calls . 9.1.3

1)

2)
3)

Subroutines 9-2

9.1.1 SUBROUTINE DECLARATION

All SOL subroutines must be declared in the declaration section of the main program.

SUBROUTINE ((dependentlist)) = (routine name) ((independent list))
where:

A subroutine declaration has the following syntax:

(dependentlist) is a parameter list consisting of one of the following:

1) Nothing, an empty list
2) A single identifier representing a parameter
0 Assumed to be of type REAL.
3) An identifier followed by a colon, and then a type name:
REAL, INTEGER or LOGICAL.
4) A list of 2)’s or 3)’s or some combination of both, sepa-
rated by commas.

(routine name) is the name of the subroutine.

0 It CANNOT be an extended identifier, see Chapter 2,
section 2.4 or Chapter 7, section 7.1.2.
0 You cannot use the subroutine name as the name of other
SOL variables.

(independent list) is syntactically the same as a (dependentlist)
This syntax is also outlined in Chapter 5 , section 5.2.

9.1.2 SUBROUTINE IMPLEMENTATION

A subroutine performs action. When you implement a subroutine, you do the following:

0

0

Specify what action will be performed by the routine.

Specify parameters will be used by the subroutine. In implementing a sub-
routine, only FORMAL parameters are specified.

Formal parameters are like variables in a formula; they are filled in later with specific
values. When a subroutine is invoked by a subroutine call, the FORMAL input parameters
are filled in with ACTUAL input parameters, and the subroutine’s action is performed. This
topic is discussed in greater detail in section 9.2 of this chapter. All SOL subroutines must
be implemented in the subroutine implementation section that follows the main program.

Subroutines 9-3

A subroutine implementation has the following syntax:

SUBROUTINE ((dependent list)) = (routine name) ((independent list))
(optional declaration)
(subroutine body)

END (name)
where:

(dependent list) is a parameter list, as oul,liricvl sc>ction 9.1, I of tliis cliapt c r
and represents t,he subroutine’s formal dependent pxaine-
ters.

.‘\

(routine name) is a legal SOL identifier, and is the name of the subroutine.
0

follows.
cannot be an extended identifier, see restriction 6) as

(independent list) is a parameter list, as outlined in section 9.1.1 of this chapter,
and represents the subroutine’s formal independent parame-
ters.

(optional declaration) is a SOL subroutine declaration section. The syntax for a
declaration section is given in detail in chapter five. The
subroutine declaration section shares an identical syntax with
the main program declaration section with one exception:
0 no subroutines may be declared in the declaration section
of a subroutine implementation.

(subroutine body) is one or more SOL statements. Empty statements and blank
lines can appear.

The following restrictions apply to subroutine implementations:

The subroutine (routine name) MUST be identical to the name declared in
the main program declaration section.

The (dependent list) MUST be identical, in terms of type, number and
order, to the dependent parameters declared in the main program declaration
section,.

The (independent list) MUST be identical, in terms of type, number and or-
d c ~ , to the independent parameters declared in the main program declaration
section, .
A subroutine CANNOT alter the values of its independent parameters or a
SOL error will result.

A subroutine hIUST initialize its depcndeiit paraiiieters or a SOL error will
result.
The subroutine (routine name) cannot be an extended identifier. See
Chapter 2, section 2.4 or Chapter 7, section 7.1.2 for details on extended
identifiers .
The names of all formal parameters must be unique.

1)

2)

3)

4)

5)

6)

7)

Subroutines 9-4

A subroutine’s body can only access variables initialized within the subrou-
tine, or passed as parameters. Section 9.3 of this chapter explores scope rule
restrictions in greater detail. Parameters are discussed in section 9.2 of this
chapter.

8)

When a subroutine is invoked by subroutine call:

e Formal independent parameters are initialized with actual parameter values
before the subroutine’s statements are executed.
The statements in the subroutine implementation are executed.

Formal dependent parameters are initialized by the subroutine statements.

e

e
/-

When the execution of the subroutine statements is completed:

e the subroutine ends and the formal dependent parameters return their values
to the actual dependent parameters.

9.1.3 THE SUBROUTINE CALL

A subroutine is executed as a result of a subroutine call. The call consists of

e the subroutine name
e the actual independent and dependent parameters.

The syntax for a subroutine call is:

((dependent parameters)) = (routine name) ((independent parameters))
For Example, the following are syntactically legal SOL subroutine calls:

1)
2) (a) = sub2(b, c)

3) (> = empty-parameter-sub()

(a, b, c) = sub-one0

e Chapter 6, section 6.7 offers a detailed discussion of the specific syntax of
the subroutine call, detailing the syntax for the parameters and so on.

Tf the subroutine declaration and subroutine implementation have parame-
ters, the same number and type of parameters M U S T be supplied when the
routine is called.

If no parameters are specified in the declaration and implementation, then
parameters CANNOT be supplied with the subroutine call.
SOL does not have recursion: SOL subroutine’s should not call themselves.
Furthermore, SOL subroutines should not call themselves indirectly, by call-
ing another subroutine, or series of subroutines that eventually call the first
routine.

e

The following restrictions apply to subroutine calls:

1)

2)

3)

The SOL compiler does NOT catch this error.

Subroutines 9-5

L

,

0 The parameters supplied when calling a subroutine are referred to as AC-
TUAL parameters, to differentiate them from the FORMAL parameters
specified by the subroutine declaration and implementation.
The number and type of ACTUAL parameters MUST be the same as the
number and type of FORMAL parameters (given in the subroutine declara-
tion and implementation) or compile-time errors occur.

0

9.2 SUBROUTINE PARAMETERS

The parameters specified by the subroutine implementation are callcd the FORMAT,
parameters. The parameters given in a subroutine call arc called the ACTUAL parameters.
This distinction is explained in the three sections that follow:

9.2.1 - Discusses FORMAL parameters.
9.2.2 - Discusses ACTUAL parameters
9.2.3 - Discusses the association between FORMAL and ACTUAL parameters.

9.3.1 FORMAL PARAMETERS

A FORMAL parameter represents a local variable within the subroiltine. These FOR-
MAL parameters representing local variables can be accessed by the code that performs the
subroutine’s action, given in thc subroutine implementation.

In this way, a FORMAL parameter acts like a variable in a formula. For example,
f (x) = 2s + 1. The variable s is the FORMAL parameter; it designates a “blank” which is
filled in later with an actual value. The actual values for FORMAL parameters are supplied
when the subroutine is called.

There are two types of FORMAL parameters: independent and dependent, which are
discussed in the two sections that follow.

9.2.1.1 Formal Independent Parameters

A FORMAL independent parameter represents a local variable within the subroutine
implementation. An actual parameter is passed to the subroutine when it is called. The
subroutine associates the VALUE of the actual parameter with the FORMAL independent
parameter. The details on this association are supplied in section 9.2.3 of this chapter.

The following restrictions apply to INDEPENDENT parameters:

A subroutine cannot alter the value of a formal independent parameter.
Thus, attempting to assign a value to a formal independent parameter is an
error.

A subroutine CAN access the value of a formal independelit parameter.

FORhlAL INDEPENDENT parameters are INITIALIZED at the start of
the subroutine implementation. (A very important fact, as in the following
examples.)

1)

2)
3)

Subroutines 9-6

The parameter names must be unique; no two parameters can have the same
name.

4)

Thus, the rule to remember about formal independent parameters is:

0 "Use but do not Alter."

EX AMP LES :

The following sample subroutines illustrate legal and illegal usage of FORMAL indepen-
dent parameters:
Example 1:

SUBROUTIIE (a) = example-l(b, c)

! a is a formal dependent, b and c are formal
! independent parameters

a = 12 * b + c
c = 12

EID exaraple-I

a The line, c = 12, is ILLEGAL because it assigns a value to an formal inde-
pendent parameter and a compilation error results.

Example 2:
SUBROUTIHE (a) = example_2(b, c)

! a is a formal dependent, b and c are formal
! independent parameters

a = 12 * b + c
IF a . g t . 12 THEH

END I F
c = 12

EID example-2

0 The line, c = 12, is ILLEGAL. Recall that FORMAL independent parame-
ters are initialized at the start of the subroutine implementation. Thus, c is
initialized before the start of the IF statement, and the assignment within the
I F statement is NOT to a local variable, c , but to the formal independent
parameter. See Chapter 6, section 6.3.1 for details of IF statement scope
rules.

Example 3:
SUBROUTIIE (a) = example_3(b, c)

! a is a formal dependent, b and c are formal
! independent paranieters

a = 12 * b + c
EID example-3

Subroutines 9-7

I 1

I

0 This example is perfectly legal, as neither of the formal independent param-
eters have their values altered.

9.2.1.2 Formal Dependent Parameters

A formal dependent parameter represents a local variahle within thct subroutine. An
actual parameter is associated with the formal dependent parameter when the subroutine
is called. A value for the actual dependent parameter is returned by the formal dependent
parameter when the subroutine ends. The details on this association are supplied in section
9.2.3 of this chapter.

The following restrictions apply to FORMAL DEPENDENT parameters:

A subroutine MUST initialize all FORMAL dependent parameters. Failing
to assign a value to a FORMAL dependent parameter is an error.

A subroutine can access the value of a FORMAL dependent parameter, but
only after it has been initialized within the subroutine.
The formal parameter names must be unique.

1)

2)

3)
The subroutine directly accesses the actual parameter corresponding to the FORMAL

dependent parameter. The FORMAL dependent parameters return the results of the sub-
routine’s action; you MUST assign a new value to all FORMAL dependent parameters or a
compile-time error will result.

EXAMPLES:

The following sample subroutines illustrate legal and illegal usage of formal dependent
parameters.

Example 1:
SUBROUTINE (a, b) = example-l(c)

! a and b are formal dependent, c is a formal
! independent parameter

a = 10.24 * c
bad-try = a + b

END example-1

0

0

The formal dependent parameter, b, is never initialized. This is an error.

The line bad-try = a + b is ILLEGAL. Because b is not initialized, it cannot
be used in an arithmetic expression. The SOL compiler issues a compile-time
error message.

Subroutines 9-8

Example 2:
SUBROUTIBE (a, b) = example_2(c)

a and b are formal dependent, c i s a formal
independent parameter

a = l 2 + c
IF a . g t . 12 THE#

b = 12
EHD IF

END example-2

0 The formal dependent parameter, b, is never initialized. The line, b= 12
appears inside the THEN part of an IF statement, with no assignment to
b in a corresponding ELSE part. Therefore, only a local variable, not the
formal dependent parameter, is initialized. See Chapter 6, section 6.3.1 for
more information on IF statement scope rules.

Example 3:
SUBROUTIlDE (a, b) = example_3(c)

! a and b are formal dependent, c is a formal
! independent parameter

b = 6
a = 12 * b + c

EHD example-3

This example is LEGAL. Both formal dependent parameters are initialized.

9.3.3 ACTUAL PARAMETERS

ACTUAL parameters are named when a subroutine is called. Earlier, it was stated that
a FORMAL parameter was analagous to a variable in a formula, e.g., f(s) = 22 + 1.

0 The variable 5, is the FORMAL parameter which designates a “blank” to be
filled in later.

The actual value that fills in x is analgous to an actual parameter, e.g., f(2)
and f(6) have 2 and 6 as actual independent parameters for x.
The actual parameters for subroutines are given when the subroutine is called.

0

0

The following restrictions apply to ACTUAL parameters:

ACTUAL parameters MUST be variables; they CANNOT be subroutine
calls, or literal values (e.g., . true . or 6) For example, in our y = f (x)
analogy, it is ILLEGAL to say f(2). Rather, we might say, q = 2, y = f(q).)

1)

Subroutines 9-9

There is a one-to-one relationship between ACTUAL parameters and FOR-
MAL parameters. The number and type of actual parameters MUST be
identical to the number and type of FORMAL parameters or an error will
result. The details of this relationship are discussed in section 9.2.3 of this
chapter.

If an actual parameter is to be both accessed and altered in a subroutine, it can be

(x) = sub-l(x)

There are two types of actual parameters, dependent and independent, which are dis-

2)

passed as both an independent and dependent parameter. For example:

cussed in the sections that follow.

9.2.2.1 Actual Independent Parameters

An ACTUAL independent parameter is passed to a subroutine as input. For every
ACTUAL independent parameter, there must be a corresponding FORMAL independent
parameter. The associated FORMAL independent parameter takes the value of the AC-
TU AL independent parameter .

The value of actual INDEPENDENT parameters will not be altered by the subroutine.
For example, the following demonstrates the use of actual independent parameters:

y = 2
(XI = sub,l(y)
print y

This subroutine will always print the real number “2”. A subroutine cannot not alter its
actual independent parameters; in this case we know what will be printed with no knowledge
of the subroutine’s action.

9.2.2.2 Actual Dependent Parameters

An ACTUAL dependent parameter is returned from a subroutine as output. For ev-
ery ACTUAL dependent parameter, there must be a corresponding FORMAL dependent
parameter. The associated formal dependent parameter corresponds directly to the actual
dependent parameter. The value of the ACTUAL dependent parameter is assigned the value
of the corresponding FORMAL dependent parameter when the subroutine ends.

EXAMPLES :

Assume that you have written an subroutine named square, with one dependent and one
independent parameter. The subroutine returns the square of the independent parameter as
the dependent parameter. A probable subroutine implementation follows:

SUBROUTINE (y) = square (x)

END square
y = x * * 2

Subroutines 9-10

The following calls to subroutine square illustrate the principle of actual dependent
parameters:
Example 1:

p = 3
(9) = square(p)
print q

This will print the real number 9, which equals 32

Example 2:
v = 6
(9) = square(v1
print v
print q

This will print the real number 5 , which is v’s value, and the number 25 which equals 5
* 5 , q’s value.

Thus, the value of the actual dependent parameter will be changed by the subroutine.
Of course, it is possible for a subroutine to assign the actual parameter to its original value
. Section 9.2.3 which follows provides a discussion on the association between actual and
formal parameters.

9.2.3 THE RELATIONSHIP BETWEEN ACTUAL AND FORMAL PARAMETERS

Actual parameters are named when a procedure is called, while formal parameters the
names used by the subroutine implementation. Formal parameters are like “blanks” which
are filled in by actual parameters provided at the call. SOL matches actual and formal
parameters positionally (see example 2 which follows).

0 Formal Independent parameters are Copy-In: The value of the actual pa-
rameter is copied into the formal independent parameter.
Formal Dependent parameters are b y Reference, the formal dependent pa-
rameter references the same place in memory as the actual parameter. Thus,
any changes in the formal parameter within the subroutine affect the actual
parameter. However, SOL assumes that dependent parameters are unini-
tialized, so that its error-checking assures that dependent parameters are
assigned a value within the subroutine.

The best way to describe the relationship between actual and formal parameters is

0

through an example. Consider the following subroutine implementation:

Example 1:
SUBROUTIBE (a , b) = an-example (c, d)

print c
print d
a = c * d
b = c + d

EID an-example

This subroutine has the formal dependent parameters, a and b, as well as formal inde-
pendent parameters, c and d.

Subroutines 9-1 1

.

Example 2:
v = 4
w = 2
(y,z) = an-example (w , v)
print y
print z

In this call, y and z are named as actual dependent parameters, with w and v specified
as actual independent parameters. Parameters are paired positionally:

- y is associated with a

- z is associated with b

- w is associated with c
- v is associated with d

The independent parameters are paired as follows:

- at the start of the subroutine, c = value of w, in other words c = 2.
- at the start of the subroutine, d = value of v, in other words, d = 4.

Wherever c and d are referenced in the subroutine the values 2 and 4. respectively, are
used.
The dependent parameters are paired as follows:

- at the end of the subroutine, y = value of a, in other words y = 8. (8 = c *

- at the end of the subroutine, z = value of b, in other words z = 6. (6 = c +

Thus, when the print statements are reached, 8 and 6 are the values of y and z respec-

d = 2 * 4)

d = 2 + 4)

tively.

9.3 T H E SCOPE RULES FOR SUBROUTINES

In the body of a subroutine implementation, only three types of variables can be accessed:

1) ‘l‘tic’ subrout iric’s iridcpt.dcnt. formal paraincitcw

The independent parameter’s values can only he accessed, it is
ILLEGAL to alter them.

The subroutine’s dependent formal parameters can be accessed once they
have been initialized within the subroutine.
Any variables initialized within the subroutine.

0

2)

3)

following:
A subroutine CANNOT access any other variables, including but not limited to the

0

0

variables initialized in the main program

variables initialized in another subroutine

Subroutines 9-12

Chapter 10
Predeclared Functions

.
SOL provides predeclared functions that perform commonly used mathematical compu-

tat ions.

0

0

Predeclared functions are invoked by a function reference.

Predeclared functions use an actual argument as input, and rcturn an arith-
metic value.
Functions can be referenced when evaluating arithmetic expressions or as-
signment statements. (See Chapter 4, section 4.1 for more information on
ari t hemtic expressions).

0

SOL predeclared function references have the following syntax:
(function name) ((arith expr))

where:

(function name) is the name of the predeclared function. Any other identifiers are
illegal, and will result in an error.

(arith expr) is a SOL arithmetic expression. See Chapter 4, section 4.1 for more
information on arithmetic expressions.

SOL predeclared function references must abide by the following restrictions:

The (arith expr) must be of the proper type for the function referenced.
The specific types needed by each function are detailed in the table that
follows.

Functions can ONLY be referenced on the righthand side of an assignment,
statement, or, as part of an arithmetic expression.

Predeclared functions CANNOT be referenced as a subroutine parameter.
(E.g., subrout ine-1 (x , y , abs (x)) , where “abs” is a predeclared function,
is ILLEGAL).

The following table details the purpose of each predeclared function, the number of

1)

2)

3)

arguments required, and the type of arguments required:

Prcdeclnrcd Fhc t ions 10-1

Table 10-1: Predeclared Functions

Purpose of Function

computes the absolute
value of argument

computes the arc
Tangent of argument

computes the cosine
of argument

computes, e raised to
the argument, eargument

computes the natural
logarithm of argument

truncates the value
of the argument

computes the sine
of argument

computes the square
root of argument

computes the tangent
of argument

Name

ABS

ATAN

cos

EXP

LOG

INT

SIN

SQRT

TAN

Number of
Argument (s)

~ ~~

Type of
Argument (s)

REAL,
INTEGER

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

Type of
Result (s)

REAL,
INTEGER

REAL

REAL

REAL

REAL

INTEGER

REAL

REAL

REAL

EXAMPLES:

The following examples demonstrate function references in SOL:
Example 1:

R

R is assigned the value 3.141 multiplied by the absolute value of the sum of negative 10.2
3.141 * ABS(-10.2 + 4)

and 4, (i.e. 6.2).
Example 2:

d = 12.00
p = cos(d)**2 + s in(d) ** 2
p is assigned the value of the cosine of twelve, squared, plus the value of the square of

the sine of twelve. (i.e. (cos d) 2 + (sin d) 2)
Example 3:

d= EXP(2.0)
d is assigned the value of e to the second power, or e squared.

Predeclared Functions 10-2

Example 4:
t = TAN(4)
This is illegal, because TANGENT requires a REAL argument, and "4" is an Integer.

Note that "4.0" would have been legal. This error will NOT be caught by the SOL compiler,
but will be discovered by the FORTRAN compiler, when the output of the SOL compiler is
compiled.

.

Predeclared I;'unct.ions 10-3

Chapter 11
Scope Rules

c

,

SOL restricts how variables can be accessed to prevent uninitialized variables from being
accessed. The block in which a variable is initialized determines the variable’s scope, where
in the program the variable can be accessed. The rules which determine where a variable
can be accessed are called scope rules.

0 Each of the following is a block in SOL:

1. the main program

11. sub routines

111. if/ t hen/else statements
iv. assemblages and components

..

...

0 The chief characteristic of a block is that a variable can be initialized inside
a block, and remain uninitialized outside it.

For example, a variable can be initialized inside an ASSEMBLAGE
but remain uninitialized in the SOL program outside the ASSEM-
BLAGE statement.

0

0

0

Some blocks can be nested inside each other.

A block is NOT the same as a multi-line statement. A multi-line statement
simply extends over several lines. For example, the OPTIMIZE statement
extends over several lines, but is NOT a block.

The following definitions are useful for describing SOL’S variable access restrictions:

Block: A place in a SOL program where a variable can be initialized, and remain unini-
tialized in other parts of the program.

Scope: Refers to where (in a SOL program) a variable can be accessed. All the places
where a variable can be accessed is the “scope” of the variable. The rules which
decide where the variable can be accessed are called “scope rules.”

Local: Used to describe the relationship between a variable and a block. Variables which
are initialized inside a block are called “local” to that block.

This Chapter is divided into four sections:

1) Scope rules for the main program . . . , 11.1
2) Scope rules for subroutine implementations 11.2

Scope Rules 11-1

3) Scope rules for IF/THEN/ELSE statements 11.3

4) Scope rules for ASSEMBLAGES and COMPONENTS. 11.4

I 11.1 MAIN PROGRAM SCOPE

l’lie main program block has access to all idcntilicrs initializcd within it, aiitl

can call subroutines declared in the declaration section.
The main program can make variable type declarations in its declaration
section.

The main program cannot call itself.

The main program block CANNOT access identifiers initialized inside of
either:

1. blocks that are nested inside the main program
OR

..
11. subroutines.

0 Exception: variables initialized inside of ASSEMBLAGES or COM-
PONENTs can be accessed with a special “extended identifier” no-
tation. See Chapter 7, section 7.1.2

No variables can have the same name as an ASSEMBLAGE, COMPONENT, sub-
routine, the program name or other non-local variables.

11.3 SUBROUTINE SCOPE

A subroutine can access all identifiers initializcd within it, which includes its
own parameters.

A subroutine can make variable type declarations in its declaration section.
SOL subroutines can call any other subroutine declared in a given SOL
program.
A sul)routiric cannot atcccss tlic main propaill, o r any iht,ific:rs iiiit,ializcyl
i n t,lic rnain program.

A subroutine cannot declare local subroutines

A subroutine cannot call itself. (Recusion is NOT permited.) The SOL
compiler will not catch this error.

1)

2)
3)

4 1

5)

6)

I Scope Rules 11-2

7) A subroutine CANNOT access identifiers initialized inside of either:
blocks that are nested inside the subroutine. 1.

OR
..
11. other subroutines.

0 Exception: variables initialized inside of ASSEMBLAGES or COM-
PONENTs within the subroutine can be accessed with a special
“extended identifier” notation. See Chapter 7, section 7.1.2

0 See Chapter 9 for further details on subroutines. Also, see Chapter 6, section
6.7 for information on subroutine calls.

A brief overview of subroutines is presented in Chapter 2, section 2.1.4 0

11.3 IF/THEN/ELSE SCOPE

All previously initialized identifiers can be both accessed and altered within
an IF/THEN/ELSE statement.

Assignments to a previously UNINITIALIZED variable within the THEN por-
tion of an IF/THEN/ELSE statement will create and initialize a local variable,
except under rule 4 which follows.

Assignments to a previously UNINITIALIZED variable within the ELSE por-
tion of an IF/THEN/ELSE statement will create and initialize a local variable,
except under rule 4 which follows.

An identifier which is initialized in both the THEN and the ELSE portions of
an IF/THEN/ELSE statement is NOT local to the IF/THEN/ELSE statement.
Instead, the variable is initialized in the block (i.e. the main program, a
subroutine, an ASSEMBLAGE or COMPONENT, or even another IF/THEN/ELSE
statement) that encloses the IF/THEN/ELSE.

For instance, if an IF/THEN/ELSE statement appears in the main program,
the main program encloses the IF/THEN/ELSE. But if an IF/THEN/ELSE state-
ment appears INSIDE the THEN portion of a second IF/THEN/ELSE state-
ment, the second IF/THEN/ELSE statement’s THEN block encloses the first
IF/THEN/ELSE statement.

Local variables of an IF/THEN/ELSE statement cannot be accessed outside
the IF/THEN/ELSE block.

1)

2)

3)

4)

0

5)

0 Rules 2, 3, 4, and 5 were designed to insure that variables are not left unini-
tialized. Since variables are initialized the first time they get a value, a vari-
able must be initialized in both the THEN and ELSE portion of IF/THEN/ELSE
statements to be considered initialized in an outer block.

Chapter 6, section 6.3 provides further details. 0

Scope Rules 11-9

11.4 ASSEMBLAGE AND COMPONENT SCOPE

1) AT MOST ONE ASSEMBLAGE statement can appear within the main program.

AT MOST ONE ASSEMBLAGE statement can appear per subroutine imple-
ment ation.
COMPONENT statements can ONLY appear within an ASSEMBLAGE statement
or within another COMPONENT statement.

ASSEMBLAGES and COMPONENTS cannot appear within DO loops.

ASSEMBLAGES and COMPONENTS cannot appear within IF/THEN/ELSE state-
ments.

2)

3)

4)
5)

Summarization variables and summarization expression variables are AL-
WAYS local variables.

ASSEMBLAGES and COMPONENTS cannot initialize or alter another
ASSEMBLAGE or COMPONENT’S summarization variables.

ASSEMBLAGES and COMPONENTS can only access another ASSEM-
BLAGES and COMPONENT’S summarization variables when: 1) ex-
tended identifier notation is used and 2) the ASSEMBLAGE or COM-
PONENT attempting access appears after the summarization vari-
able is initialized.

ASSEMBLAGES and COMPONENTS can ACCESS and ALTER all identifiers pre-
viously declared in outer blocks.

A warning message is issued when outer block variables are al-
tered.

Any identifier initialized within an ASSEMBLAGE or COMPONENT cannot be
altered by outer blocks.

However, the value of the variable can be accessed via the ex-
tended identifier notation.

Chapter 7 provides a more detailed discussion of both ASSEMBLAGE scope
rules and extended identifier notation.

6)

0

0

7)

0

8)

0

0

Scope Rules 11-4

Appendix A
BNF Grammar for SOL

.

What follows is a BNF Backus-Naur Form) LALR(1) grammar for the Sizing and

riage returns. In addition, (ID) and (NO) are terminal symbols representing SOL identifiers
and numbers. This is the actual grammar used in the SOL compiler, so many of the grammar
rules have been arranged to facilitate code emission.

(PROGRAM)
(PROGRAMSUB?) ..-
(PROGRAMSUB?) ::= (PROGRAMSUB?)(PROGRAMSUB)
(W ..-

::= (;) (?-$
(;) ..- ,
(9 ::= (;);

Opimization Language, SOL. f n the grammar, the many semi-colon symbols represent car-

: := (?-;) (PRO G R A M 3 AI N) (P ROG RA M S U B?) (EO F) . .-

..-

..- .

(PROGRAMHEAD)
(PLAINPROGRAM-HEAD) ::= PROGRAM (IDPROGRAM);
(P ROG RAM MAIN)

(PROGRAMMAIN)

(EN DJD) ::= END (OKJD)
(IDPROGRAM) ::= (OKJD)
(SUBHEAD)
+
(PROGRAM S U B)
+ (STATEMENTLIST)(ENDJD) (;)
(PHOGRAhISU B)
(S U B ROU TI N E)
(IDS U B D EF)

(FORMALDEPLIST?) ::= (FORMALDEPLIST)
(FORMALDEPLIST) ::= (XJD)
(FORMALDEPLIST) ::= (FORMALDEPLIST), (XJD)

(FORMALJNDEPLIST?) ::= (FORMAL JNDEPLIST)
(FORMALJNDEPLIST) ::= (XJD)
(FORM ALJ N D E P LIST)
(X-ID) ::= (OKJD)

: := (PLAIN P R O G RAM-H EAD) (? -;)

: : = (P ROG RAM -H EA D) (B L 0 C K) (STATEMENT LIST)

: : = (P LAIN -P ROG RA hi -H EA D) (STAT EM ENTLIST)
+ (ENDJD)(;)

+ (ENDJD)(;)

::= (SUBROUTINE)((FORMALDEPLIST?)) = (IDSUB-DEF)(
(FO Rhl AL J N DEP LIST?))

: : = (SU B-HE AD) (;) (BLOCK S U B)

: : = (S U B-H E AD) (STAT Ehl EN TLI ST) (EN DJD) (;)
::= SUBROUTINE
::= (OKJD)
..- (FORMALDEPLIST?) ..-

..- (FORMALJNDEPLIST?) ..-

::= (FORMALJNDEPLIST), (XJD)

::= (OKJD): REAL
::= (OKJD): INTEGER
::= (OKJD): LOGICAL
::= DECLARE (MA1NDECLARE)END DECLARE ;

(XJD)
(X-ID)
(XJD)

(MAINDECLARE) ..-
(BLOCK)

(M AIN-DECLARE) ::= (MAIN-DECLARE) (DECLARESUB)
..-

BNF Grammar for SOL A - 1

(MAINDECLARE)
(MAINDECLARE)
(MAINDECLARE)
(DECLARESUB)
+
(DECLARE-DEPLIST?)
(DECLARE-DEPLIST?)
(DECLARE-DEPLIST)
(DECLARE-DEPLIST)
(IDS U B D EC L)
(DECLAREJNDEPLIST?)
(DECLAREJNDEPLIST?)
(DECLAREJNDEP-LIST)
(DECLAREJNDEP-LIST)
(WJD)

(WJD)

(;DECLARESUB)
(BLOCKSUB)
(SUBDECLARE)
(SUBDECLARE)
(SUBDECLARE)
(SUBDECLARE)
(TYPESPEC)
(TYPESPEC)
(TYPESPEC)
(DECLARE-TYPE)
(TYPEJDLIST)
(TYPE JD-LIST)
(FOWRANDECL)
(STATEMENTLIST)
(STATE M ENTJ, IST)
(STATEM ENTLIS?’)
(STAT E M EN TS)
(STATEMENTS)
(STAT E h i E N TS)
(COMPSTMTS)
(STATE hl EN T)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATE h l EX T)
(STATEMENT)
(STATE hi E N T)
(STATE hl ENT)
(STAT E hl E N T)
(STATE hi ENT)
(PRINTSTATEM ENT)
(PRINTSTATEMENT)
(PRINT)
(OPTSIGN)
(OPTSIGN)
(OPTSIGN)
(PRI NT-TAI L)
(PRINT-TAIL)

(WJD)

(WJD)

::= (hlAINDECLARE)(DECLARE-TYPE)
::= (MAINDECLARE)(FORTRANDECL)
::= (hiAINDECLARE);
::= (SUBROUTINE)((DECLAREDEPJIIST?)) = (IDSUB-DECL)(

(DECLAREJNDEPLIST?)) (;-DECLARESUB)
..- ..-
::= (DECLAREDEPLIST)
::= (WJD)
::= (DECLAREDEPJX’I’), (WJD)
::= (OKJD)

: : = (DECLARE J N D E P LIST)
::= (WJD)
::= (DECLARE JNDEP-LIST) , (WJD)
::= (OKJD)
::= (OKJD): REAL
::= (OKJD): INTEGER
::= (OKJD): LOGICAL

::= DECLARE (SUB-DECLARE)END DECLARE ;

: := (SU B-D ECLARE) ;
::= (SUB-DECLARE)(DECLARE-TYPE)
::= (SUB-DECLARE)(FORTRANDECL)
::= REAL
::= INTEGER
::= LOGICAL
::= (TYPESPEC)(TYPE JD-LIST);
::= (OKJD)
::= (TYPEJD-LIST), (OKJD)

. .- . .-

.._ . ..- ,

..- ..-

::= /* ;
::= (;)
: := (;) (STATE hi E NTS)
: := (STATE hi EN‘r S)
::= (STATEMENT)
::= (STATEMENTS);
::= (STATEMENTS) (STATEMENT)
::= (STATEhfENTS)
::= (ASSEMBLAGE)
::= (COMPONENT)
::= (DOSTATEMENT)
::= (IFSTATEMENT)
: := (CALL STATE hl E N T)
::= (ASSIGNAlENT)
: : = (0 PTI M STAT EM EN T)
: : = (P RI N TSTAT E X I E N T)
: := (SU hi hl A RIZ ESTATE M E N T)

::= (PRINT);
::= (PRINT) (PRINTLIST);
::= PRINT

::= +
::= (OPTSIGN) (NO) : (FORMAT)
::= (OPTSIGN)(NO)

::= /*

. .-

. .- ..- -

BNF Grammar for SOL A-2

(PRINT-TAIL)
(PRINT-TAIL)
(PRINT-TAIL)
(PRINTLIST)
(PRINTLIST)
(FORMAT)
(FORMAT)
(SUMMARIZESTATEMENT)
(S U M M A FtJ Z ESTAT E-W 0 RD)
(SUMM ARIZESTATE-TAIL)
(SUMMARIZESTATE-TAIL)
(SUMMARIZESTATE-TAIL)

(DOSTATEM ENT)
(DOSTATEMENT)
(LOGICALDOSTATEMENT)
(LOGICALDOHEAD)
(LOGICALDOHEAD)
(LOGICALDOHEAD)
(LOGICAL-ENDDO)
(ENDDO-WHEN)
(INDEXEDDOSTATEMENT)
(EN DDO)
(ENDDO)
(DOHEAD)
(DOH EAD)
(DOHEAD)
(DOBEGIN)

(IFSTATEMENT)
(ENDJF)
(EN DJF)
(I FSTATE M ENT)
(IFJIEAD)

(IF H EA D)
(I FH E AD)
(ELSEHEAD)
(ELSEHEAD)
(ELSEXEAD)
(ASS E M B LAG E)
(TABNO)
(TABJO)
(ASSEM-HEADER)
+
(ASSEMJD)
(SUMMARIZE-DECLARE)
+
(SUMMARIZE-WORD)
(SUMMARIZE-TAIL)
(SUMMARIZE-EXPR)
(SUMMARIZEXXPR)
(SUMMARIZE-EXPR)
(SUMMARIZESTATE)
(SUMMARIZESTATE)
(SUMMA RIZESTATE)

* (SUMMAFUZESTATE-TAIL)

(SJD)

(IF)

::= (OKJD)
::= (OKJD): (FORMAT)
::= (STRING)
::= (PRINT-TAIL)
::= (PRINTLIST), (PRINT-TAIL)
::= (OKJD)(NO)
::= (OKJD)
: : = (S IJ M MA RJZ ESTATE-W 0 I t D) (S I J M M A RIZ ESTA'I'F:-'l'A 1 I ,) ;
::= SUMMARIZE
::= (OKJD)
: := (SUMMA RIZ ESTATE-TA I L) , (OK 1 D)
::= (OKJD): (FORMAT)
::= (SUMMARIZESTATE-TAIL), (OKlD) : (FORMAT)
::= (INDEXEDDOSTATEMENT)
::= (LOGICALDOSTATEMENT)
::= (LOGICALDOJIEAD)(LOGICALENDDO);
..- DO ;
::= (LOGICALDOHEAD)(STATEMENT)
::= (LOGICALDOHEAD);
::= (ENDDO-WHEN)(LOGICAL-EXPRESSION)
::= (ENDD0)WHEN
::= (DOHEAD) (ENDDO);
::= END DO
::= ENDDO
::= (DOBEGIN), (ARITHXXPR);
::= (DOHEAD) (STATEMENT)
::= (DOHEAD);
::= DO (SJD)= (ARITHXXPR)
::= (OKJD)
: := (IF-H E AD) (EN DJF) ;
::= END IF
::= ENDIF
::= (IFHEAD) (ELSEJIEAD) (ENDJF);
::= (IF) (LOGICALl2XPRESSION)THEN ;
::= IF
: : = (IF H EA D) (STATEM E N T)
::= (IFHEAD);
::= ELSE ;
: := (E LS EJ1 EA D) (STAT EM ENT)
::= (ELSE-HEAD);
::= (ASSEhI-HEADER)(STATEMENT_LIST)END (OKJD);
::= TAB (NO)
::= (NO)
::= ASSEMBLAGE (ASSEhI_ID)((OPTSIGN)(TAB-NO), (STRING

::= (OKlD)
: : = (S U hi M A RIZ E-WO RD) (S U h l MA RJZ E-TAIL)

::= SUMhlARIZE (;)
: := (SUM M ARIZ E-EXPR) (;)
: := (S U M M A RIZ ESTATE)
: := (SU hl MA RIZE-EXPR) , (SUMMA R IZESTATE)
: : = (S U hl hl A RIZ E-EX P R) (;) (S U M MA It1 Z ESTATE)
::= (SUJD)
::= (SUMMARIZEARITHASSIGN)
: := (DECLARESWITCH)

. .-

(;) (SUXIhl A RIZE-DECL ARE)

(IT E RAT1 0 NS?) S U hl hl A R I Z E

BNF Grammar f o r SOL A-3

(DECLARESWITCII)
(SU-ID)
(SUMMARIZEARITH ASSIGN)
(SUA RJD)

(SARITHJ3XPR)
(SA RITH-EXP R)
(SARITH-EXPR)
(SARITH-EXPR)
(SARITHEXPR)

(S-=)

(S-+)
@--I
(S -TERM)
(S -TERM)
(S-TERM*)
(S-TERM)
(S-TERM /)
(S P R I M A RY)
(SPRI hi A RY)
(S P RI M ARY H E A D)
(SSOURCE)
(SSOURCE)
(S S O U RCE)
(S-(3XPRESSIOK)
(SSOU RCE)
(S E U N C T)
(SJUNCT)
(SIUNCT)
(SEUNCT)
(S-FUNCT)
(S-FUNCT)
(S _F U N CI')
(SEUNCT)
(SJUNCT)
(CO hl P 0 N EN T)
+
(COhf P-WORD)
(COM P-WORD)
(ID-COhfP)
(CO M P JT E RAT IO K S ?)
(COMPJTERATIONS?)
(IT E RATIONS?)
(ITERATIONS?)
(ITERATING)
(CO M P S FVITCII ES)
(COMPSWITCHES)
+
(CONVERGE?)
(CONVERGE?)
(CONVERGE?)
(COMPSW3D-1)
(COMPSWJD)
(C A L L STAT E hI EK T)
+
((-CALL)
(IDSUB-CALL)

::= SUMMARY-TITLE = (STRING)
::= (OKJD)
: := (SUA R J D) (S-=) (SA RIT I1 _EX 1' It)
::= (OKJD)

::= (S-TERM)
::= (SARITHXXPR)(S-+)(S-TERM)
::= (SARITHXXPR)(S--) (S-TERM)
::= (S-+)(%TERM)
::= (S--)(S-TERhi)
::= +
::= (SPRIMARY)
: : = (S -T E RM *) (S PRIM A RY)
::= (S-TERh[)*
: := (S-TERM/) (SPRIM ARY)
::= (%TERM)/
::= (SSOURCE)
::= (SPRIMARYHEAD)(SSOURCE)
::= (SPRIhlARY)**
::= (NO)
::= (OKJD)
::= (S-(_EXPRESSION) (SARITHXXPR))

::= (SJUNCT)(SARITII-EXPR))
..- SIN (
::= ABS (
::= SQRT (

::= LOG (
::= TAN (
::= ATAN (
::= I N T (
::= EXP (
: := (COM P-WO RD) (I D-COMP) ((OPT SIGN) (TAB B O) , (STRING

::= COMPONENT
::= COhiP
::= (OKJD)

::= (1TERATING)ITERATE (;)
::= END
::= (ITERATING)

::= (COMPSWJD-l)= (ARITH-EXPR)(CONVERGE?)
::= (COMPS\YITCIIES)(;)(COMPSWJD)= (ARITHXXPR)

..- - ..- -

. .- ..- -

::= (

. .-

::= cos (

(COhlPJTERATIOIVS?)(COMPSTMTS)END (OKJD);

. .- ..-

::= ITERATE ; (c o a i P s w r c I I E s) ; E N D

(CONVERGE?)
..- ..-
::= : (NO)
::= : (NO)%
::= (OKJD)
::= (OKJD)
::= ((-CALL)(ACTUAL-DEP-LIST?)) = (IDSUB-CALL)

((ACTUAL _IN DE P -LIST?)) ;
::= (
::= (OKJD)

BNF Grammar for SOL A-4

(ACTU ALDEPLIST?)
(ACTUALDEPLIST?)
(ACTUALDEPLIST)
(ACTUALDEPLIST)
(ACTUALJNDEP-LIST?)
(ACTUALJNDEP-LIST?)
(ACTUALJNDEP-LIST)
(ACTU ALJNDEP-LIST)

(ASSIGNMENT)
(ASSIGNMENT)

(YJD)

(ZJD)
(=)
(OPTIMSTATEMENT)
(0 PTIM ,H EA D)
(OPTIMBODY)
(OPTIMBODY)
(OPTIMEODY)
(USE-HEAD)
(USESTATEMENT)
(OPTIONS?)
(OPTIONS?)
(OPTIONSHEAD)
(0 LIST)
(OLIST)
(OLIST)
(OLIST)
(O-LIST)
(O-LIST)
(ALGOSTMT)
(ALGOSTMT)
(ALGOSThlT)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(SEARCH)
(SEARCH)
(SEARCH)
(SEARCH)
(OPTI M -P RJ N T)
(OPTIM-PRJ NT)
(OPTIM-VAL)
(OPTIM-VAL)

..- * .-
: := (ACTUALDEP-LIST)
::= (YJD)
::= (ACTUALDEP-LIST), (YID)

::= (ACTUALJNDEP-LIST)
::= (YJD)
::= (ACTUALJNDEP-LIST), (YJD)
::= (OKJD)
: := (Z I D) (=) (A RITH -EX P R) ;
: := (ZJD) (=) (LOG IC A LXXP RESSION) ;
::= (OKJD)

::= (OPTIM-HEAD) (;) (OPTIM-BODY) EN D OPTIMIZE ;
::= OPTIMIZE (OKJD)
::= (USESTATEMENT)
::= (OPTIM-BODY)(STATEMENT)
::= (OPTIMBODY);
::= USE (;)
::= (USEHEAD)(USE-BODY)(OPTIONS?)END USE ;

::= (OPTIONS-HEAD)(O-LIST)
::= OPTIONS (;)
::= (OPTIM-PRINT)
::= (ALGOSTMT)
::= (OPTIMSWITCHES) (;)
::= (OLIST) (OPTIMJRJNT)
::= (0-LIST)(ALGOSTMT)
::= (OLIST) (OPTIMSWITCIIES) (;)
::= STRATEGY = (STRATEGY)(;)
::= OPTIMIZER = (OPTIMIZER)(;)
::= SEARCH = (SEARCH)(;)
::= NONE
::= EXTERIOR PENALTY
::= LINEAR PENALTY
::= QUADRATIC PENALTY
::= CUBIC PENALTY
::= LAGRANGE MULTIPLIER
::= SEQUENTIAL LINEAR
::= INSCRIBED HYPERSPHERES
::= SEQUENTIAL QUADRATIC
::= SEQUENTIAL CONVEX
::= NONE
::= FLETCHER - REEVES
::= DFP
::= BFGS
::= FEASIBLE DIRECTIONS
::= MODIFIED FEASIBLE DIRECTIONS
::= GOLDEN SECTION
::= GOLDEN SECTION + INTERPOLATION
::= FIND BOUNDS + INTERPOLATION
::= INTERPOLATION/EXTRAPOLATlON
::= PRINT NOTHING (;)
: : = PRINT (OPTI M-VA L) (0 PT-PRT-TIM E?) (;)
::= OBJECTIVE
::= DESIGN VARIABLES

..- ..-

..- - ..- -

. .- . .-

BNF Grammar for SOL A-5

(OPTIM-VAL)
(OPTIM-VAL)
(OPTIM-VAL)
(OPTIM-VAL)
(0 PTI M-VAL)
(OPTPRT-TI M E?)
(OPT-PRT-TIM E?)
(P RT-TIM E)
(PRT-TIME)
(TI h l E)
(TIME)
(TIME)
(TIME)
(?OPT_EXPR)
(?OPT_EXPR)
(OPTIMSWITCHES)
(OPTIMSWITCHES)
(OPTIMSET)
(OPTIMSET)
(OPTIMSWJD)
(USE-BODY)
(USE-BODY)
(USE-DESIGN-OR-CONSTRAINT)

(DESLO)
(DESLO)

(DESHI)
(DESHI)
(USE-DESIGN-OR-CONSTRAINT)

(FUZZYRELAT)
(FUZZY R E L AT)
(FUZZY RELAT)
(LOGICAL-EXPRESSION)
(LOGICAL-EXPRESSION)
(.OR.)
(LOGICALJ'ACTO R)
(LOGICAL-FACTOR)
(.AND .)
(LOGICALSECON DARY)

(.NOT.)
(LOGICAL-PRIhl ARY)
(LOGICAL-PRIMARY)
(LOGICAL-PRIhl ARY)
(LOGICAL-PRIhl ARY)
((_EXPRESSION)

(RE L AT)
(REL AT)
(RE L AT)
(RELAT)
(RELAT)
(RELAT)
(ARITH-EX P R)

(DJD)

(DES)

(C-ID)

(LOGICALSECOXDARY)

(LOG IC A L P RI hl A RY)

::= VIOLATED CONSTRAINTS
::= ACTIVE CONSTRAINTS
::= CONSTRAINTS
::= TERMINATION CRITERIA
::= EVERYTHING

::= (PRT-TIME)
::= (TIME)
::= (PRT-TIME), (TIME)
::= INITIALLY
::= EVERY (?OPT_EXPR)ITERATION
::= EVERY (?OPTEXPR)SEARCH STEP
::= AT TERMINATION

::= (ARITHEXPR)
::= (OPTIMSET)
::= (OPTIMSWITCHES)(OPTIhISET)
::= NORMALIZE
: : = (0 PTI M S W JD) = (ARITII E X PR)
::= (OKJD)
::= (USEDESIGN-OR-CONSTRAINT)
::= (USE-BODY)(USE-DESIGN-OR-CONSTRAINT)
::= (DID)= (DES)IN [(DES-LO), (DES-HI)] (;)
::= (OKJD)

::= (ARITHXXPR)
::= (ARITHXXPR)

::= (ARITHXXPR)
: : = (C _I D) (FUZZY R E L AT) (A RITII -EX PR) (;)
::= (OKJD)
::= .EQ.
::= .LT.
::= .GT.
::= (LOGICALPACTOR)
::= (LOGICALXXPRESSION) (.OR.)(LOGICALYACTOR)
::= .OR.
::= (LOGICALSECONDARY)
::= (LOGICALYACTOR) (.AND .) (LOGICALSECONDARY)
::= .AND.
::= (LOGICALPRIhIARY)
::= (.NOT.)(LOGICAL-PRIhlARY)
::= .NOT.
::= (ARITIIEXPR) (RELAT) (ARITII-EXPR)
::= .TRUE.
::= .FALSE.
::= (OKJD)

::= ((_EXPRESSION) (LOGICA 1A:X PILESSION))
::= .EQ.
::= .LT.
::= .GT.
::= .NE.
::= .LE.
::= .GE.
::= (TERM)

. .- . .-

.._ ..-

..- ..-

. .- ..-

::= (

BNF Grammar for SOL A-6

(ARITH-EXPR)
(ARITH-EXPR)
(ARITH-EXP R)
(ARITH-EXP R)
(+)
(4
(TERM)
(TERM)
(TERM*)
(TERM)

(PRIMARY)
(PRIMARY)
(PRIMARYHEAD)
(SOU RCE)
(SOURCE)
(SOURCE)
(SOU RCE)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)

,d (FUNCT)
(OKJD)

(TERM/)

::= (ARITH-EXPR) (+) (TERM)
: := (ARITH J3XP R) (-) (TERM)
::= (+)(TERM)
::= (-)(TERM)
::= +
::= (PRIMARY)
: := (TERM *) (P RIM A RY)
::= (TERM)*
::= (TERM/)(PRIMARY)
::= (TERM)/
::= (SOURCE)
::= (PRIMARYHEAD)(SOURCE)
::= (PRIMARY)**
::= (NO)
::= (OKJD)
::= ((_EXPRESSION)(ARITH_EXPR))
: : = (F U NCT) (ARITH -EX P R))
::= SIN (

::= LOG (
::= TAN (
::= ATAN (
..- INT (
::= EXP (
::= SQRT (
::= ABS (
::= (ID)

. .- ..- -

::= cos (

. .-

BNF Grammar for SOL A-7

Appendix B
Compiler Messages

The following are the error messages given by the SOL compiler. The messages are listed
in alphabetical order. The type of message is described, along with the probable cause, and
probable source of aid in this reference.

ASSEMBLAGE ILLEGALLY DEFINED IN IF OR DO STATEMENT
*** ERROR ***

- An ASSEMBLAGE CANNOT appear inside I F or DO statements.

. 6.3(IF)

. 6 .4 (DO)

. 7.1

ASSEMBLAGE OR COhfIPONENT SCOPE ERROR
*** FATAL ERROR ***

- This is an internal compiler error which indicates the compiler software is
not functioning properly. This error should never appear.

CAREFUL, THIS MACRO IS BEING REDEFINED
*** WARNING ***

- You are using ?def or ?xdef with a macro that is already defined. This

. C. 1 (simple macros).

. C.2 (parametric macros).

warning message appears in case the redefinition was accidental.

C 0 bl P I L AT IO N AB 0 RTED .
-** FATAL ERROR ***

- ‘fhe compiler cannot recover from your errors, so the current compilation
halts.

COMPONEXT OR ASSEMBLAGE NOT ENDED CORRECTLY.
*** ERROR ***

- The same name must be used to start and end an ASSEMBLAGE or COMPONENT

. 7.1
statement .

Compiler Messages B-1

COMPONENT OUTSIDE ASSEMBLAGE OR INSIDE DO OR IF STMT.
*** ERROR ***

- COMPONENT statements are illegal outside an ASSEMBLAGE statement or within
an IF/THEN/ELSE or DO statement.

. 6 . 3 (I F)

. 6 . 4 (D O)

. 7.1 (111) (ASSEMBLASE)

CONSTRAINED OPTIMIZER WITH UNCONSTRAINED PROBLEM
*** ERROR ***

- Algorithms for constrained optinlization, such as Feasible Directions
or Modified Feasible Directions, CANNOT be used for unconstrained
problems unless a strategy is used. You must either employ a strategy or
switch optimization methods.
. 8.3.1 (Table 8-2)

DEPENDENT PARAMETER NOT INITIALIZED IN SUBROUTINE
*** ERROR ***

- Subroutine dependent parameters hIUST be initialized within the subroutine.

. 9.1.2
DESIGN VARIABLES UNBOUNDED DURING NORMALIZATION
*** ERROR ***

- Unbounded design variables cannot be normalized. Either eschew normal-

. 8.3.3
ization or add bounds to all design variables.

DIGIT EXCEEDS BASE
*** ERROR ***

- This number is too large and beyond the compiler’s range. Typically occurs

. 2.2.5
when scientific notation is used with an overly large exponcwt.

DUPLICATE ASSEhlBLACE DECLARED.
*** ERROR ***

tine.
- No more than a single ASSEMBLAGE can appear per maill program or subrou-

. 7.1(11)

. 11.4

?

Compiler Messages B-2

DUPLICATE IDENTIFIER DECLARED.
*** ERROR ***

- In general this error occurs whenever the same name is used to refer to two
or more objects, for example a variable and a subroutine. Some common
possibilities are listed below.

- You have

. . . .
- You have

. . . .

. . . .
- You have

. . . .
- You have

. . . .

- You have

. . . .
- You have

gram.

. . . .

. . . .

given a subroutine the same name as one of its arguments

. 5.2
given two subroutine formal parameters the same names.

. 5.2

. 9.1.2

given two subroutines the same names
. 5.2
declared a variable to be of two types in the declaration section.

. 5.1
given two COMPONENTS at the same nesting level the same names.

. .7.1(111).
given a variable the same name as a subroutine or the main pro-

. 5.2(SUB)

. l l . l (MAIN)

DUPLICATE OPTIMIZATION VARIABLE DECLARED.
*** ERROR ***

- Design variable and constraint names must be unique within a given OPTI-
MIZE statement.

. 8.1 (Design variables)

. S.2 (Constraints)

EMITTED LINE EXCEEDS MAX CONTINUATIONS.
*** ERROR ***

- The FORTRAN emitted by the SOL compiler allows only 19 consecutive con-
tinuation lines using the & symbol. Break the offending SOL statement into
several shorter SOL statements to avoid this problem.

EMPTY FILE PASSED TO INCLUDE MACRO
*** WARNING ***

- An empty file is being included, the rest of the line on which the ?include

. c.4.3
macro appears is ignored

Compiler Messages B-3

EXPECTING APPEND TEXT, A { SYMBOL SHOULD BE HERE
*** ERROR ***

- When using the ?append or ?xappend macros, the next non-blank character
after the macro name should be a {, to indicate the start of the replacement
text.

. c.4.7

FILE OVERFLOW - MACRO NESTING TOO DEEP
*** ERROR ***

- In doing macro expansion, files are used. If more than 10 macros are being
expanded at once (e.g. via ?xdef), this error occurs. The error results from
macros calling other macros calling other macros ... Reduce the nesting level
(complexity) of your macro calls.

FORMAT OF THIS TYPE HAS NO DECIMAL POINT
*** ERROR ***

- You cannot use a decimal point with an I or L format

. 6.2.2.3 and 6.2.2.4

FORMAT OF THIS TYPE REQUIRES A DECIMAL POINT
*** ERROR ***

- You must use a decimal point with an E or F format

. 6.2.2.1 and 6.2.2.2

FORMAT TYPE ILLEGAL FOR INTEGER VARIABLES *** ERROR ***
- You must use an I or L format when printing integer variables

. 6.2.2

FORMAT TYPE ILLEGAL FOR LOGICAL VARIABLES
*** ERROR ***

- You must use an L format when printing logical variables

. 6.2.2
FORMAT TYPE ILLEGAL FOR REAL VARIABLES
*** ERROR ***

- You cannot use an I or L format when printing real variables

. 6.2.2

FORTRAN BLOCK BEFORE hlAIN PROGRAM BEGINS
r** ERROR ***

- You have started a FORTRAN block before your SOL program has begun.
You should move the FORTRAN block after your program’s header.

. 6.8

Compiler Messages B-4

FORTRAN BLOCK DELIMITERS MUST BE IN COLUMN ONE
*** WARNING ***

- You should put your block delimiters in column one to bc sure your FOR-
T R A N code will be spaced corrcctly in the compiler's output.

. 6.8
FORTRAN BLOCKS ILLEGAL IN A COMPONENT OR ASSEMBLAGE
*** ERROR ***

- FORTRAN blocks cannot appear inside of ASSEMBLAGES or COMPONENTS, be-
cause errors could result in the FORTRAN code emitted. The variables emitted
in the FORTRAN code often are emitted with aliases. The FORTRAN block
will not be accessing the same variables, and errors can result,

. 6.8

~

FURTHER IKPUT IGNORED.
*** EHItOft *** I

I
- Self-explanatory; the compiler stops parsing the present line. This message

often appears with other error messages.

GRAhlMAR DOES NOT CONTAIN A N UNCONDITIONAL REDUCTION.
*** FATAL ERROR ***

I
- This is an internal compiler error that indicates the compiler software is not

functioning properly. It should never appear.

ID MUST BE REAL, INTEGER OR LOGICAL FOR FORMAT
*** ERROR ***

- You have probably tried to print a subroutine name, ASSEMBLAGE or COMPO-
NENT name or some other non-variable. Only variables can be printed.

IDENTIFIERS MUST BE LESS T H A N 28 CHARACTERS LONG
*** WARNING ***

- You have used an identifier that is longer than 27 characters.

I . 2.2.4

ILLEGAL ARGUMENT; REAL TYPE ARGUMENT IS REQUIREII
r ERROR ***

- INTEGER or LOGICAL variables and/or expressions CANNOT be passed to

. Chapterlo.

~ functions which require a REAL argument.

ILL E G .4 L C I I A R AC T E R
*** ERROR ***

- An illegal character which the SOL compiler does not recognize appears in

. 2.2
your program.

Compiler Messages B-5

a

i

ILLEGAL INITIALIZATION OF AN INDEPENDENT PARAMETER
*** ERROR ***

- Independent subroutine parameters CANNOT be assigned a value; only de-
pendent parameters can be assigned values.

. 9.1.2, 9.2.1.1, and 9.2.3
ILLEGAL ITERATION: VARIABLE ALREADY INITIALIZED
*** ERROR ***

- ASSEMBLAGE or COMPONENT iteration variables CANNOT be initialized d o i r ,

. 7.3
the ITERATION section of the ASSEMBLAGE or COMPONENT.

ILLEGAL LIST CALL, ON AND OFF ARE THE ONLY SETTINGS
*** ERROR ***

- The ?list macro with an has only two legal settings: ON arid OFF.

. (2.4.4
ILLEGAL MACRO USE: UNDEFINED MACRO DISCOVERED
*** ERROR ***

- Macros MUST be defined before they are used.
. AppendixC

ILLEGAL NAME RESULTS FROM CALL TO COMPONENT MACRO
*** ERROR ***

- Expansion of the ?componentname macro created an overlong line. Try to
break the original line up with the continuation symbol to avoid overlong
expansion.
. C.4.6

ILLEGAL OPTIMIZER AND STRATEGY COMBINATION
*** ERROR ***

- Not all combinations of optimizer and strategy are legal.

. 8.3.1 (Table 8-4)
ILLEGAL SYNTAX IN FORMAT STATEMENT
*** ERROR ***

- An illegal character appears within the format statement
- The field width of your format statement is zero or less.

. 6.2.2

ILLEGAL USE OF AN EXTENDED IDENTIFIER
*** ERROR ***

- Extended identifiers CANNOT be used as subroutine names, ASSEMBLAGE
or COMPONENT names, objective variable names for optimization, or in other
ways; extended identifiers can only be used to refer to variables initialized
inside of ASSEMBLAGES or COMPONENTS.
. 7.1.2

Compiler Messages B-6

ILLEGAL USE OF AN OPTIMIZATION DESIGN VARIABLE
*** ERROR ***

- Design variable cannot be used to define other design variables in the USE
section of an OPTIMIZE statement, nor can values be assigned to a design
variable with assignment statement or subroutine call.

. 8.1

ILLEGAL USE OF PREVIOUSLY INITIALIZED LOOP VARIABLE
*** ERROR ***

- The control variable of a DO loop cannot be altered within the loop. For
example, the control variable of a nested DO loop cannot he the same as an
outer loop’s cont,rol variable.

. 6.4.1

ILLEGAL USE OF SUMMARIZATION EXPRESSION VARIABLE
*** ERROR ***

- Expression summarization variables are ONLY implicitly initialized at the
end of an ASSEMBLAGE or COMPONENT; it is ILLEGAL to assign values to an
expression summarization variable.
. .7 .1 .1 .1

ILLEGAL USE OF ZERO LENGTH STRING
*** ERROR T**

- A null string CANNOT be used in specifying a COMPONENT or ASSEMBLAGE’S
summarize print information. Use a blank string (’ ’) instead.
. 6.2.3.3

INCORRECT PARSER TABLES.
*** ERROR ***

I - This is an internal compiler error indicating that the SOL compiler is not
working properly. It should never appear.

INPUT LINE EXCEEDS 120 CHARS.
*** ERROR ***

- SOL lines can be at most 120 characters long. If the line contains macros,
perhaps the trouble is due to macro expansion. Use the continuation symbol,
&, to break the line into smaller pieces.

. 2.4

INVALID DATA TYPE FOR USE.
*** ERROR ***

- A subroutine name, ASSEMBLAGE or COMPONENT itanic, or soriic other type of
identifier appears where a variable M U S T appear.

INVALID SYNTAX FOR REAL NUMBER.
*** ERROR ***

- Check the syntax of a REAL number.

. 2.2.5and3.3

Compiler Messages B-’7

IT IS ILLEGAL TO APPEND TO AN UNDEFINED MACRO *** ERROR ***
- A macro must already be defined before the ?append and ?xappend macros

cam be used to add additional text.

. c.4.7
ITERATION VARIABLE HAS NOT BEEN INITIALIZED
*** ERROR ***

- ASSEMBLAGE and COMPONENT iteration variables MUST be initialized w i t h ,
the iterating ASSEMBLAGE or COMPONENT.

. 7.3
LAST ERROR ABORTED COMPILER.
*** FATAL ERROR ***

- Self-explanatory; the compiler is so wounded by the input program, it cannot
go on.

MACRO ARGUMENTS DO NOT MATCH DEFINITION
*** ERROR ***

- the called macro’s arguments do not match its
macro definition and call to see if they match.

.

.

defined pattern. Check the

. c . 2

. c . 3

MACRO PARAMETERS MUST BE SEQUENTIAL
*** ERROR ***

- Macro parameters must be defined in a sequential order, i.e., #2 appears
before #3.
. c.2

MISSING (gives symbol inserted) INSERTED BEFORE SYMBOL.
*** ERROR ***

- The compiler could not parse the SOL code input, but made the change
above and will try and go on.

MISSPELLED (gives symbol) CORRECTED.
*** ERROR ***

- The compiler could not parse the SOL code input, but guessed that a word
was just misspelled, corrected it and will try to go on.

NO COMPONENTS HAVE ENDED
*** ERROR ***

- A SUMMARIZE print statement CANNOT appear until a t least one COMPONENT

6.2.3.1

or an ASSEMBLAGE has ended.

.

Compiler Messages B-8

NO DESIGN VARIABLES DEFINED IN OPTIMIZATION
*** ERROR *** I

- At least ONE design variable MUST appear within every OPTIMIZE state-
ment.

I . 8.1

NO FILE NAME GIVEN.
*** FATAL ERROR ***

- No SOL code source file has been given, so there is nothing to compile

. 1.1

NO RULE CAN BE APPLIED IN PARSER.
*** ERROR ***

- Internal compiler error indicating that the compiler software is not function-
ing properly. This error should never appear.

NO SUMMARIZATION VARIABLES HAVE BEEN DECLARED
*** ERROR ***

- At least one summarization variable MUST be declared in an ASSEMBLAGE

. 7.1.1

st a tement .

NUMBER REPRESENTATION GREATER T H A N 27 CHARACTERS
*** ERROR ***

I

- Numbers CANNOT be longer than 27 characters.

. 2.2.5
OPT I M I2 AT IO N VA RIA B L E IS U N I N IT I A L I Z E D
*** ERROR ***

- The objective function or a constraint variablc for an OPTIMIZE statement
has been left uninitialized. These variables must be initialized within the
OPTIMIZE statement (i.e. by assignment statement or subroutine call.)

. Chapter 8 and 8.2

OUT OF INFO \VHILE COLLECTING MACRO
*** ERROR * x *

- The SOL program ended before the last macro call was completed.
. AppendixC

OUTER SCOPE VARIABLE ALTERED IN ASSEMBLAGE OR COMPONENT
*** WARNING ***

- ASSEMBLAGES and COMPONENTS can alter non-local variables; this warning flags

. 7.2

the alteration in case it was accidental.

Compiler Messages B-9

OVERLONG LINE IN MACRO DEFINITION
*** ERROR ***

- Delimited macro’s CANNOT have a pattern more than 120 characters long.
The continuation symbol CANNOT be used here and a smaller pattern must
be used.

.

. c.3
0VER.LONG LINE IN MACRO EXPANSION
*** ERROR ***

- A line in your macro call expands beyond line size, 120, when the parameters

. c.2
are substituted. Shorten the line by altering the macro definition.

PROGRAM NOT ENDED CORRECTLY.
*** ERROR ***

- The name at the start of a SOL program MUST be the same as the name

. 2.1.5

used to end it.

REAL NUPvlBER EXCEEDS MACHINE RANGE.
*** ERROR ***

- SOL numbers are limited in range.
. 2.2.5, 3.1 and 3.3

SEVERE SYNTAX ERROR
*** ERROR ***

- An illegal character or word appears in your SOL program

SEVERE SYNTAX ERROR CAUSED PARSER FAILURE.
*** FATAL ERROR ***

- The compiler cannot recover from the previous syntactic errors, and will stop
execution. Fix the errors found and recompile.

SOURCE PROGRAhl FILE IS EMPTY.
*** FATAL ERROR ***

- An empty file; there is no program to compile so execution halts.

. 1.1

STRING EXCEEDS ALLOWABLE STRING LENGTH
*** ERROR ***

- Strings CANNOT be longer than 61 characters.

SUBROUTINE ARGUMENT DEPENDENCY NOT MATCH DECLARATION
*** ERROR ***

- The number of independent or dependent parameters in the subroutine im-
plementation does not match the subroutine’s declaration. The total num-
ber of parameters is correct, but there are too many or too few depen-
dent/independent parameters

. 9.1.2

Compiler Messages B-10

SUBROUTINE ARGUMENT NUMBER NOT MATCH DECLARATION
*** ERROR ***

- The number of parameters in the subroutine implementation does not match
the subroutine’s declaration.

. 9.1.2

SUBROUTINE ARGUMENT TYPES NOT MATCH DECLARATION
*** ERROR ***

- The argument types in your subroutine implementation do not match the

. 9.1.2

types of arguments given in the subroutine’s declaration.

SUBROUTINE DEFINED TWICE IN SOURCE
*** ERROR ***

- You have two implementations of the same subroutiiic; eliminate one.

SUBROUTINE NAME NOT DECLARED
*** ERROR ***

- The implemented subroutine was not declared.

. 9.1.1 and9.1.2

SUBROUTINE UNDEFINED IN SOURCE
*** ERROR ***

- The declared subroutine is never implemented.
. 9.1.1 and9.1.2

I SUMMARIZATION VARIABLE DECLARED AS A NON-REAL TYPE
*** ERROR ***

- Summarization variables and summarization expression variables MUST be

. 5.1

. .7.1.1.1

SUMMARIZATION VARIABLES INITIALIZED BEFORE ASSEMBLAGE; LOCAL

r** WARNIKG ***

REAL; change the DECLARE section or rename your summarization variable.

COPY MADE

- The summarization variable declared has already been intialized; a local copy

. 7.1.1.1 and7.2
S U h IM A RIZ AT IO N VARIABLES I NI T I .A L I Z E D \VH E N SUB - C 0 M P 0 N ENTS EXIST

will be used within the ASSEMBLAGE.

*** ERROR *Ir*

- The summarization variables of an ASSEMBLAGE or COMPONENT which contain
nested COMPONENTS CANNOT be initialized; such variables are initialized
automatically.

. .7.1.1.1

I Compiler Messages B-11

SUMMARIZATION VARIABLES UNINITIALIZED
*** ERROR ***

- The summarization variables of an ASSEMBLAGE or COMPONENT which DO

. .7.1.1.1
NOT contain nested COMPONENTS MUST be initialized.

SYNTAX DEMANDS A ? SYMBOL HERE
*** ERROR ***

- The compiler expects a macro name to appear, but you have not supplied a
leading macro symbol,?.
. c.1

THE INCLUDE MACRO MUST APPEAR ALONE ON A LINE
*** ERROR ***

- Other non-blank characters CANNOT appear on the same line as the ?in-
clude macro.
. c.4.3

THE INPUT FILE NAME IS TOO LONG.
*** ERROR ***

- File names cannot be longer than 120 characters.

THIS IS AN ILLEGAL OPTIMIZATION SWITCH
*** ERROR ***

- This is not a valid optimizer option setting.

. 8.3 (8.3.3 and 8.3.4 esp.)
TOO MANY ITEMS IN PRINT LIST, ONLY 20 ALLOWED
*** ERROR ***

- At most 20 items can be printed with a single PRINT or SUMMARIZE print

. 6.2.1 and6.2.3
statement .

UNCONSTRAINED OPTIMIZER WITH A CONSTRAINED PROBLEM
*** ERROR ***

- No constraints can be used with this optimization algorithm unless a strategy
option is chosen. You must either employ a strategy or switch optimization
methods.
. 8.3.1 (Table 8-4)

UNEXPECTED SYMBOL DELETED.
*** ERROR ***

- The compiler cannot parse your program, and has deleted the above symbol
and will try and go on.

UNEXPECTED SYMBOL REPLACED BY (gives replacement symbol)
*** ERROR ***

- The compiler cannot parse your program, and has replaced an unexpected
character or word with the above, and will try and go on

Compiler Messages B-12

UNIMPLEMENTED SUBROUTINE(S)
*** ERROR ***

- The subroutines listed were declared BUT NOT implemented. Either alter
the DECLARE section or implement the subroutines.
. 5.2

. 9.1.2

UNINITIALIZED IDENTIFIER.
*** ERROR ***

- Variables cannot be accessed until they are initialized
VALUE EXCEEDS MAXIMUM INTEGER.
*** ERROR ***

- INTEGERS have a limited range.
. 3.1

VARIABLE NOT DECLARED AS A SUMMARIZATION VARIABLE
*** ERROR ***

- SUMMARIZE print statements are legal only with summarization variables.
. 6.2.3

Compiler Messages B-19

Appendix C
~

L

1

SOL Macros - Advanced Material

Macros are an advanced feature of SOL and are not recommended for the novice. An
experienced SOL user can benefit from the use of macros, especially when developing large
SOL programs.

Macros are like abbreviations. A single character, or short word, can represent longer
sequences of text that are used repeatedly. The simplest macro consists of a macro name and
a body of replacement text. Defining a macro involves associating a name with replacement
text. When a macro name appears in a SOL program, the replacement text is substituted for
the name a t COMPILETIME. This act of replacement is known as a macro call or macro
expansion. Macros allow text substitution in a SOL program.

This may seem complex, but a simple example will clarify the concept. Suppose we
define a macro named ?pi (all macros begin with the ? symbol), with the replacement text
“3.141592654,” a t the start of a SOL program. Then, whenever the name ?pi appeared in
my SOL program, it would be replaced with 3.141592654. For instance, x = 2 * ?pi * r
would become, x = 2 * 3.141592654 * r

Naturally, macro definitions are not generally used just to speed up the typing of one
isolated formula. The real advantage lies in using a macro abbreviation for clusters of code
or text that are used dozens of times throughout a SOL program.

Abbreviations like ?pi are useful in many applications, and they are powerful. One
little macro can represent an enormous amount of material. The judicious use of macros can
reduce or eliminate the tedium of retyping repetitive portions of identical or similar code.
Further, a macro can be made an abbreviation for a complex tangle of code. By giving
the macro a carefully selected name which reflects the function of the code, the macro can
be made more understandable than the text that will be substituted. In this way, a tidy,
descriptive macro call can appear in the SOL program, and the messy code is hidden away
as replacement text.

It is important to note that the text replacement occurs at COMPILE-TIME,
and is not a dynamic run-time event.

0

SOL offers four different kinds of macros:

1) Simple macros, like the ?pi example above C.l

2) Parametric macros, which are macros with parameters C.2
Delimited macros . C.3

4) Predefined macros, provided by the SOL compiler C.4
3)

I SOL Macros - Advanced Material C-1

C.l SIMPLE MACROS , Simple macros consist in a macro name and a body of replacement text. Using macros
involves two elements:

1)
2) Calling (expanding) the macro

Defining the macro and its replacement text

In order to use a macro, it MUST be defined first. SOL provides the means to define
macros by using a predefined macro, ?def (All macros begin with a ? symbol). A simple
macro definition has the following syntax:

?def (macroaame) { (replacement text) }
where:

(macro name) is the name of the macro. It must consist of a ? symbol, fol-
lowed by either a legal SOL identifier or a single non-alphabetic
character.
0 Extended Identifiers are not legal macro names.

(replacement text) is the body of replacement text. Any characters can appear in
the replacement text.
0 However, additional restrictions apply to the use of open brace,
{, and close brace, }, within the replacement text. See section
C.1.2 of this appendix for details.

There are a number of stipulations for proper use of SOL macros. These stipulations fall
naturally into two categories:

1) General stipulations for simple macro definitions C.1.1
2) Stipulations which govern the body of replacement text C.1.2

I c. 1.1 GENERAL RULES FOR SIh€PI,E MACRO DEFINITIONS

~

The following restrictions apply to simple macro definitions:
I

No spaces can appear between the ? symbol and the word, def or between
the ? symbol and the first character of the macro name.

Zero or more spaces, tabs and/or carriage returns are allowed between the
(macro name) and the open bracket, {, that signifies the start of the macro’s
replacement text.

Macro definitions can appear anywhere a blank line can appear in a SOL
program, including before the main program header (e.g., PROGRAM t e s t)
appears.

More than one macro definition can appear per line, although one per line is
recommended for readability’s sake.

1)

2)

3)

4)

SOL Macros - Advanced Material C-2

5) A macro must be defined before it is called.

c

Macros CAN be redefined by subsequent macro definitions. The most recent
macro definition holds.

6)

0 SOL gives a warning message announcing that a macro is being
redefined, just in case the redefinition is a.c<:idcnt,al.

To illustrate these points, consider thc following macro dcfiiiitiori in tlw coiltext of a SOT,
program (annotatcd with line numbers to facilitate the discussion):

A01 PROGRAH t ea t
A02 ?def ?incr-x
A03
A04 x = 0
A05 DO i = 1, 10
A06 ?incr-x
A07 print x
A08 ? incr-x
A09 print x
A10 ElJDDO
A l l
A12 EHD Best

(x = x + 3.141592664)

The macro definition appears on line A02. It associates the macro name, ? incrr , with
a body of replacement text, x = x + 3.141592654. Wherever the name ? i n c r s is found,
it will be replaced by the SOL compiler with the replacement text, x = x + 3.141592654.
Thus, lines A05 - A10, are seen by the SOL compiler EXACTLY AS IF the following was
typed:

BO5 DO i = 1, 10
BO6 X = X + 3.141592654
BO7 print x
BO8 X = X + 3.141592654
BO9 print x
B l O ElJD DO

Notice that the macro names have all been replaced by the replacement text. Calls to
user defined macros (e.g., A06 or A08) do not appear in the SOL compiler LISTING file
(See Chapter 1, section 1.4). Rather, the expanded text appears instead.

SOL Macros - Advanced Material C-3

~ ~ ~~~

As a further example, consider the following sample program:
A0 1
A02
A03
A04
A06
A 0 6
A07
A08
A09
A10
A l l
A12
A 1 3
A14
A16
A16
A17

?def ?prt,incr,x
(pr int x
x = x t 2)
! some macro def ini t ions before the main program
! beginn. Notice t h a t t h e replacement t e x t s t re tches
! over two l i n e s
?def ?pythag,x
(x = sq r t ((s ide1 ** 2) t (side2 ** 2))
?prt,incr,x 1
Program x-printer
1 = 12
?prt,incr,x
s ide1 = 3
side2 = 4
?pythag-x
p r i n t x

end x-printer

In this example, the macros on lines A12 through A16 are expanded, and the SOL
compiler acts EXACTLY as if the following was typed instead of lines A12 through A16:

B12
813
B l 4

816
B16
B17
B 1 8
B l Q

PRIIT X
x = x + 2
sidel = 3
side2 = 4
X= SqRT((SIDE1 ** 2) t (SIDE2 ** 2))
PRINT X
x = x + 2
p r i n t x

The macro on line A12 is expanded into lines B12 through B13. The macro on line A15
is expanded on lines B16 through B18. Notice that the call to ?ptr-incr_x is also expanded.

These examples are fairly simple, but illustrate the basic principle behind simple macros.

c.1.2 SIMPLE hfACRO DEFINITION (REPLACEMENT TEXT)

The following restrictions hold for the syntax and body of the repla.cemcnt text:

1) A macro’s replacement text CAN include calls to other macros.

A macro CANNOT call itself in the replacement text of its own defini-
tion, either directly or indirectly. SOL DOES NOT PROVIDE ERROR-
CHECKING FOR THIS, so you must avoid this condition on your own.

2)

SOL Macros - Advanced Material C-4

Braces, { and }, CANNOT be included in the replacement text UNLESS
they are paired.

o This restriction requires a more dctailed explanation. The re-
placement text is delimited by an open bracc, {, and a close
brace, }. But consider the following declaration: (columns de-
noted shown for convenience)

3)

01234S6789abcdefghijklmnopqrstuvsxyzABCDEFGEIJKLl4H
?def ?rnacro-l Ireplace) me)

The SOL compiler cannot determine whether the brace in column t is intended to end
the replacement text, or whether the end of the text occurs in column y. However, it is useful
to have braces appear in macro replacement texts, so that macro definitions can appear in
the replacement text, for example:

?bef ?Macro,i { ?def macro2 {a = 6) }

0 Any open brace in replacement text is matched with the nearest unpaired
close brace, so only pairs of braces can appear in the replacement text.

The replacement text will be substituted for any macro call. The compiler
will act just as if the replacement text appeared in the program, instead of
the macro call.

The listing file will contain the “expanded” replacement text, instead of the
original call.

0

0

C.2 PARAMETRIC MACROS

A useful addition to the simple macro would be the capability to have macros in which
some of the replacement text is changeable; the replacement text would become a template,
filled in with different things when the macro is used. SOL offers this capability with its
parametric macros. Macros can be defined in terms of parameters, and arguments are
supplied when the macro is used; the arguments are substituted for the parameters in the
replacement text.

This section is divided into two sections:

C.2.1 - Explains how to define parametric macros
C.2.2 - Explains how to use parametric macros

SOL Alacros - Advanced Material C-5

C.2.1 PARAMETRIC MACRO DEFINITION

Before a macro can be used, it must be defined, and parametric macros are no exception.
Defining parametric macros is very much like defining simple macros, except "blanks" are
specified in the replacement text that will be filled in when the macro is used, and the way
these "blanks" receive values is also specified. A parametric macro has the following syntax:

?def (macroname) (parameters) { (replacement text) }
where:

(macro name) is the name of the macro. It must consist of a ? symbol, fol-
lowed by a legal SOL identifier or a single non-alphanumeric
char act er .
0 Extended Identifiers are not legal macro names.

(parameters) is the macro's parameter list specifying the "blanks" that will
be filled in later. The parameter list consists of a series of
(digit) pairs, (e.g., #1 or #4), where the (digit) is a
number between 1 and 9.

(replacement text) is the body of replacement text. Any characters can appear in
the replacement text. Parameters, such as #1 appear where
variable replacement text is desired.
0 However, additional restrictions apply to the use of open
brace, {, and close brace, }, within the replacement text. See
section C.1.2 of this appendix for details.

A parametric macro definition takes the form of a template, leaving holes to be filled in

Suppose a macro is needed that would produce code to cube the variable, x. This is a

?def ?cube {x = x * x * x}
However, after a while it becomes clear that it would be useful to have a more general

macro that would produce code to cube any variable. Such a parametric macro might be
defined as below:

later. This can best be explained with an example.

simple macro, and might be defined as below:

?def ?cube #1 {#1 = #1 * #l * #1}
With this definition, ?cube x would expand to x = x * x * x and ?cube y would

expand to, y = y * y * y. The symbol #1 stands for the first parameter to the macro,
and when you say ?cube x, x is the so-called argument that will be substituted for #1 in
the replacement text .

As the notation, #1, suggests, macros can have more than one parameter. There can be
as many as nine parameters, #1 to #9, and they must be numbered in order. For example,
#4 cannot be used in a definition, unless the previous parameter was #3.

The restrictions and regulations governing the definition of parametric macros are given
below:

1) There can be no more than nine parameters, starting with #1 and increasing
to #9.

SOL Macros - Advanced Material C-6

i
~

I -

&

Parameters in a definition must be’specified in order. So for example, a
macro with four parameters, MUST name its parameters #1 to #4, in that
order.

Restriction 2) applies only to the definition of parameters (before the re-
placement text begins). Parameters can appear in any order desired within
the replacement text.

No spaces can appear between the “#” symbol and the number, “1” to “9.”

Blanks, tabs and carriage returns are IGNORED between the macro nqm-
and the first parameter, between the parameters and between the last param-
eter and the start of the replacement text, i.e. the following are equivalent:

2)

3)

4)

5)

1. ?def ?macl#l#2{. . .}
11. ?def ?macl ..

#1#2 {*4
#1#2 { . . 4 ...

111. ?def ?mac 1
iv. ?def ?macl #l #2 { . . .}
V. ?def ?macl #1 #2 {...}
vi. ?def ?macl #I

#2 { . . 4
vii. ?def ?macl #1#2{ . . .}

Further, parametric macros abide by the same regulations as simple macros,
as stipulated in section C.2 of this chapter.

6)

c.2.2 PARAMETRIC MACRO USE

Once a parametric macro has been defined, it can be used in a SOL program. Parametric
macros are used the same way as simple macros, except that the actual “arguments” to the
parameters must be supplied when the parametric macro is used. These actual arguments
are associated with the macro’s parameters. Everywhere the parameter appears in the
replacement text, the associated actual argument is substituted. The replacement text, with
substitutions, replaces the macro call in the SOL program.

Parametric macro calls have the following syntax:
? (name) (argument list)
where:

(name) is the name of the macro. Nothing can appear between the
symbol, ?, and the name of the niacro. Thc name is any legal
SOL identifier.

(argument list) is the list of arguments. The exact syntax of the argument
list is discussed in the next section, C.2.2.1

SOL Macros - Advanced Material C-7’

For example, the following are syntactically legal calls to parametric macros:

-?cube x

-??macl a b

- ?macl a b

- ?rectangle,area 14 12 total-area

This section is divided into two sections:

c.2.2.1

c.2.2.2

- Discusses what constitutes an argument

- Discusses how arguments and parameters are associated.

C.2.2.1 Arguments to Parametric Macros

An argument to a parametric macro can be any of the following:

a SOL identifier

E.g., thename, abcde a2345_7@b

a SOL string
E.g., ’the string’ , ’Walter Cronkite: what a guy’ , ’Cheap Hotel’

Note: Macro calls will NOT be expanded inside strings. However, quote
marks are stripped off and WILL NOT appear in the replacement text, (e.g.
see C.2.2.2, (example 1, 3)) for an example).
a signed (+, -) or unsigned number

E.g., .0992 , -4 , +3.456 , 8
(digit) , where (digit) is a number, “l’7..‘‘!”’, no spaces between # and
(digit) .
E.g., #2 , #S , #1 (See example 1 item 2) in section C.2.2.2).

any character other than a blank or tab character, a ?, or the quote symbol,
9

E.g., #, %, - , Y, g, u, i, * - 7 1, 0, 4, 6, {.
These arguments are combined to form an (argument list) for a parametric macro call.

An (argument list) to a parametric macro must abide by the following regulations:

If the argument is an identifer, unsigned number, or a character that can
appear in a SOL identifier, one or more tabs, blanks and/or carriage returns
must separate the argument from the macro name, otherwise, zero or more
blanks, tabs and carriage returns can appear between the argument and the
macro name. For example:

1)

DEFSNITIONS:
?def ?macl #1 #2 {
?def ?mac2,a #l #2 {

}
}

?def ?mac5 #l # 2 { I
SOL Macros - Advanced Material C-8

?def ?mac4 #l #2 #3 { 1

Legal Illegal
I ,

I '

I

' I

!

?mad 12 *
?mac2,a alfa X
?mac5 - 65
?mac3+4.3 Walter
?mac4

a
b

C

?macll2 *
?mac2,aalf a X
?mac5, 65

0 The SOL compiler cannot distinguish between the name and the
argument in the case of arguments that are identifers, numbers,
or characters that can appear in SOL identifiers, UNLESS at
least one blank or carriage return separates them.

Arguments are separated with zero or more blanks/tabs and carriage returns,
with the following exceptions:

2)

- two identifier arguments must be separated by at least one blank,
tab or carriage return.

- two numerical arguments, when the second argument is unsigned,
must be separated by at least one blank, tab or carriage return.

- An identifier argument must be separated by one or more blanks
or carriage returns from unsigned numerical arguments, or single
character arguments, when the character can appear in a legal
SOL identifier.

For example, given the definition, ?def ?macl #I #2 #3, the following macro calls

1) h a c 1 ident 12.3 $

are equivalent:

2) t m a c l ident 12.3$

3 1 ?mac I

$
12.3

ident

4) ?maci
ident
12.3
$

parametric macros.
The next section details how these arguments arc: associated with the parameters in

SOL Macros - Advanced Material C-9

C.2.2.2 Association Between Arguments and Parameters

The association between arguments and macro parameters is simple: the first argument
is associated with parameter #1, the second with parameter #2 and so on. Once all the
parameters are matched, the macro is expanded. Just be careful to supply the same number
of arguments as there are parameters, otherwise one of the following will occur:

Too few arguments: the SOL compiler will gobble up part of your SOL
program for use as a parameter argument.
Too many arguments: the SOL compiler will interpret the extra arguments
as part of the SOL program, and syntactic errors will probably result.

1)

2)

Example 1:
Definition:

Use:
?def ?example #1 {#l}

1) ?example x

This call will expand to be: x
2) ?example #1

This call will expand to be: #1

3) ?example ' t h i s is a s tr ing'

This call will expand to be: t h i s i s a s t r i n g

0 Note that the quote marks are stripped off, you CANNOT put quote marks
inside a string. IF quote marks were desired, the following definition could
be used:

?def ?example #1 { '#l '}

0 Strings must appear on a single hie.

?ex amp1 e
12.3

4)

This call will expand to be: 12.3

5) ?example CJI
This call will expand to be: (D

: &It Macros - Advanced Material C-10

c.3

Example 2:
Definition:

?def ?example2 #l
112 (#l = t 2 . 3 3

print #l>

Use:

1) ?example2 a 13

This call will expand to be:
a = 13.33
print a

In the next section, parametric macros with delimited parameters, and some more com-
plex uses of macros are discussed.

DELIMITED MACROS -

SOL also allows you to provide “delimiters” for both simple and parametric macros.
Delimiters consist of additional text, a pattern, that must be matched when the macro is
called. This section is divided into two sections that provide detailed explanations:

C.3.1 - Discusses delimited simple macros

C.3.2 - Discusses delimited parametric macros

C.3.1 DELIMITED SIMPLE MACROS

Delimiters are specified when you give a macro definition. Delimited simple macros have
the following syntax:

?def (name) (pattern) { (replacement text) }
where:

(name) is the name of the macro being defined.

(pattern) is the string of delimiters. This consists of one or more char-
acters. All characters are legal except the following: ?, {, the
blank space, and a tab. Any other character can be used as
a delimiter.

(replacement text) is the macros replaccment text.

Delimited simple macros are best explained by example. Consider the following macro

?def ? m a d pattern {x = 2)

definition:

SOL Macros - Advanced Material C-11

This macro could be called in the following ways:

Call

?mad pa tt e rn
?mac,l pattern

x = 2
x - 2

When the macro is called the pattern, “p,a,t,t,e,r,n” must be matched before the macro
will be replaced. If the pattern cannot be matched, an error results. For example, given the
definition above, the following macro calls would be ILLEGAL:

Expands to be

- ?mac-l

- ?mat-1 p at

These are illegal because the entire pattern, ‘(p,a,t,t,e,r,n” does not appear. When match-
ing delimiters, blanks, tabs, and carriage returns are ignored; matching is done on a character
by character basis. Thus, the definition above specifies that the first character is a “p,” fol-
lowed by an “a,” followed by a “t,” and so on. For example, the following are legal calls to
? m a d :

- ?mat-1 pattern

- ?mac-l p a t t er n
The precise rules that apply to the use of delimiters with simple macros are given below:

A delimiter can be any character except for the following: the macro symbol
(‘?’’, the blank space ((”, open brace (‘{’’, and a tab. A carriage return
CANNOT be a delimiter.

The symbol,“#”, has special significance. If the character immediately fol-
lowing the # is a digit in “1” . . . “g”, the #, digit pair is considered to denote
a parameter, otherwise the character “#” is considered to be a delimiter.

The macro call must match the order and number of delimiters specified in
the macro definition. If the call does not match, a SOL error will occur.

Blank spaces, tabs and carriage returns between delimiters are ignored, ex-
cept in the case of “#” as detailed previously.

Delimiters are case sensitive. For example, a will not match A.

The pattern CANNOT be longer than 120 characters, the maximum length
of a SOL input line.

The continuation symbol, &, cannot be used to dodge the length
restriction.

1)

2)

3)

4)

5)

6)

0

SOL Macros - Advanced Material C-12

I.

In general, delimited simple macros are not very useful. Delimiters are primarily used for
delimited parametric macros. However, delimited simple macros are needed to have prefix
macros, as in the next example:
Example:

Consider the following:

Definition:

Suppose we want a macro that will expand as a prefix in forming arbitrary file names.

?def ?pref ix { name-of f i l e }

?pref ix ,obj
?pref i x l i s t

name-of f i l e ,obj
***ERROR, undefined macro, “ p r e f i x , l i s t J J

As you can see, a simple macro will not do for a prefix macro; either a blank space
appears between the expanded text and the root word (-obj), or the root is misinterpreted
qs part of the macro name, as in “prefixlist” Delimited simple macros solve this problem,
as shown with the following definition:

Definition:
?def ?pref ix : {name-of f i l e }

?pref ix : ,ob j
?pref ix: l i s t

name-off i l e -obj
name-of f i l e - l i s t
Here, the delimiter, :, forces the ?prefix c a l l to match the delimiter before substituting

Section C.5 offers a summary of the rules that govern macros in general.

Use:

Expansion:

Use:

Expansion:

the replacement text. In this way, macros which can be used as prefixes are possible.

c.3.2 DELIMITED PARAhlETRIC MACROS

Delimited parametric macros are treated in much the same way as delimited simple
macros. However, delimited parametric macros can have parameters intermingled with the
delimiters. Delimiters are specified when a macro is defined. The delimiters and the param-
eters are matched when the macro is called.

SOL Macros - Advanccd Material C-13

Delimited parametric macros have the following syntax:

?def (name) (pattern) { (replacement text) }
where:

(name) is the name of the macro being defined.

(pattern) is the string of delimiters and parameters. The delimiters
consist of one or more characters. All characters are legal
except the following: ?, {, the blank space, and tabs. Pasam-
eters are specified as usual with a # digit pair. (see C.2 for
a full explanation of parameters).

(replacement text) is the macros replacement text.

Delimited parametric macros are best explained with an example. Consider the following:

?def ?increment #l by #2 from t3 t o #4
(DO i = t3.t4

EHDDO 1
This macro could be called in the following ways:

ti = ll + t2

1)

2)

?increment x by 3 from 5 t o 9

?increment l ist by 1 from 1 to maximum-list
The macro’s arguments are determined as follows: the first argument is associated with

#1, then a pair of characters b and y should be seen, then the next argument is associated
with #2 , then the characters f , r, o and m should be seen, and so on. Thus, the two calls
above would expand into the following:

1) DO i = 5,9

EYDDO
x = x + 3

2) DO i = l,HAXIMUH,LIST
LIST = LIST + 1

EIDDO

Of particular note is the fact that blanks and carriage returns are ignored when matching
up with delimiters. Thus, both of the following are legal calls to ?increment:

-?increment z b y 2 f r o m 1 t o fast-time
-?increment z by 2 from 1 to fast-time

The precise rules that govern the use of delimiters with parametric macros follow:

A delimiter can be any character except for the following: the macro symbol
?, the blank space ((”, open brace (c{n, and tab. A carriage return cannot
be a delimiter.
The symbol, “#”, has special significance. If the character immediately fol-
lowing the # is a digit, the #, digit pair is considered to denote a parameter,
otherwise the character ”#” is considered to be a delimiter.

1)

2)

SOL Macros - Advanced Material C-14

,

The macro call must match the order and number of parameters and de-
limiters specified in the macro definition. If the call does not match, a SOL
error will occur.

Blank spaces, tabs, and carriage returns between delimiters are ignored,
except in the case of “#” as detailed previously.
Delimiters are case sensitive. For example, a will not match A.

3)

4)

5)

EX AMP L ES :

Example 1:
Definition:

?def ?example ab#l 1:# 2 {print #1)

?example ab 12 1 :# 2
?example ab12 1:#2
?example a b 12

All of the above are legal calls of ?example. Note that the blank space in the definition
between “#” and “2”, make ”#” and “2” delimiters, rather than denote parameter #2. In
all three cases, #1 is associated with 12.

Use:

1 : # 2

Bad Use:
?example ab 121:# 2

This is an illegal call to ?example. Parameter #1 will be associated with the number,
121, and the delimiter, “l”, will not be found.

Example 2:
Definition:

?def ?pattern { x : } ?def ?example ?pattern #1 , y : #2 {print #1}

Because of the expansion of the macro, ?pattern, the above definition of ?example is

?def ?example x : # 1 , y : #2

?example x:l34,y:ppop
?example x : a x i s ,
y : 123.33

Section C.5 of this chapter offers a detailed summary of rules that govern macros in

equivalent to:

Use:

general.

SOL Macros - Advanced Material C-15

C.4 PREDEFINED MACROS

SOL offers eight predefined macros:

?DEF . C.4.1

?XDEF . C.4.2

?INCLUDE . c.4.3
? L I S T . . . c.4.4

1)
2)
3)
4)

5)

6)
7)

?CHECKLIST . c.4.5

?COMPONENT_NAME . C.4.6

?APPEND & ?XAPPEND . c.4.7

' C.4.1 THE ?DEF MACRO

,
The ?def macro is an essential part of SOL macros, because it allows the SOL program-

mer to define his/her own macros. The ?def macro has already been discussed tangentially
in sections C.2 and C.3 of this chapter. The ?def macro has the following syntax:

I

?def (macro name) (pattern) { (replacement text))
where :

(macro name) is the name of the macro and consists of the symbol, ?, fol-
lowed immediately by a SOL identifier.

(pattern) is the pattern text and consists of a series of delimiters and
parameters. This part is optional and does not have to ap-
pear.

(replacement text) is the replacement text, can be any characters, with stipula-
tions on the use of braces. This section is delimited by the
open and close braces, "{" and "}.',

This has already been discussed in detail in sections C.1 - C.3 of this chapter. The
following rules govern how the ?def macro can be used in a SOL program:

A ?def macro can appear anywhere in a SOL program blanks can appear.
However, a ?def cannot immediately appear after an ?include macro, on
the same line as the ?include macro.

A call to the macro being defined CANNOT appear in the replacement text
of the definition, e.g. ?def ?macl {?macl} is ILLEGAL, no error messa,ge
is given, and an infinite loop generally results. In othcr words, this is BAD,
don't do it. Also, don't do things like the following either:

1)

2)

?def ?a (6)

?def ?b {?a}

?def ?a {?b} ! A s BAD as c a l l i n g ?a d i r e c t l y .

c

c

SOL Macros - Advanced Material C-16

Macro calls in the replacement text are not expanded until the macro being
defined is CALLED. (See section (3.4.2 of this appendix).

If such an expansion is desired, use the ?xdef macro.

3)

0

4) Macros inside of comments are ignored, just as any other SOL statements.

It

I C.4.S TirE ?XDEF MACRO

The ?xdef macro acts exactly like the ?def macro, but the replacement text is handled
somewhat differently. In an ?xdef, all macros in the replacement text are expanded when
the macro is DEFINED. With a ?def, all macros in the replacement text are expanded when
the defined macro is CALLED. This difference can best be demonstrated with an example.
Consider the following:

Example 1 Example 2

?def ?macl (6)
?xdef ?mac2 {x = ?macl)
?def ?macl (9)
?mac2 ?mac2

In example 1, ?mad, in ?mac2’s replacement text, is expanded when ?mac2 is defined.

?def ?mac2 {x = 6)

When ?mac2 is called on the last line, it expands to be: x = 6.
However, in example 2, ?maci is expanded when ?mad is called, on the last line. By

this time, ?maci has been redefined. Therefore, the call to ?mad in example 2 expands to
be: x = 9.

Thus, a call to ?xdef is equivalent to a call to ?def except that the macros in the ?xdef’s
replacement text are expanded. Aside from the different expansion times of macros in the
replacement text, ?xdef and ?def are equivalent.

Thus, the ?xdef on the second line is equivalent to:

C.3.3 T H E ?INCLUDE MACRO

The ?include macro is one of the most useful features of SOL, because it allows external

?include (file name)
where :

files to be included in a SOL program. The ?include macro has the following syntax:

4

I

(file name) is the name of the file to be included.

The ?include macro call is replaced with the text of the included file in the LISTING.

The (file name) portion of the ?include macro must appear on the same
line as the call to ?include, or a SOL error results.

The following restrictions hold for the ?include macro:

1)

j

SOL Macros - Advanced Material C-15’

The file named (file name) must exist in the current directory, or the SOL
compilation will ABORT while trying to open the file. The full path name
can be given as a (file name) , but if that file does not exist, the SOL
compilation will ABORT.
If the file is empty, a SOL compile-time warning will be issued, but compila-
tion will continue.

The ?include macro MUST appear on a line alone in a SOL program.
However, an ?include macro can be followed by a comment, but NO other
statements, not even macros.

The ?include macro is especially useful for introducing often used macros. By storing
the macro definitions in a file, many SOL programs can use the same definitions by ?in-
cluding the definition file a t the start of the programs. In the same way, useful subroutines
can be stored in files, and included for use in other SOL programs. In this case, remember
to ? include the subroutine declarations, as well as implementations.

2)

3)

4)

C.3.4 THE ?LIST MACRO

The ?list macro allows the LISTING option to be turned on or off from within the SOL
program being compiled. This is useful when only a few particularly significant portions of
a SOL program are desired in the compilation listing. The ?list macro has the following
syntax:

?list (option)
where:

(option) can be one of two values: on or off. Thus to turn the listing
on, type ? l i s t on, and to turn the listing off type, ?list
o f f . In a way, the on or o f f can be considered an argument
to the ?list macro.

The ? l i s t macro must abide by the following regulations:

No carriage returns can appear between the ?list and its option, on or o f f .
Blanks can appear.

A call to ? l i s t can appear anywhere in a SOL program blanks can appear.
A call cannot appear after an ?include macro, on the same line
as the ?include.

1)

2)
0

3) All calls to ?list on will appear in the listing file.

All calls to ?list o f f will NOT appear in the listing file, because the macro
turns the listing off.

The listing CANNOT be turned on, by a call to ?list on, if the SOL
program is compiled with the compiler LIST option OFF. Thus, in order
to turn the listing on or off from within the compiled program, the SOL
program must be compiled with the compiler LIST option ON.

4)

5)

SOL Macros - Advanced Material C-18

C.4.5 THE ?CHECK,LIST MACRO

The ? c h e c k l i s t macro is a companion to the ?list macro. The ? c h e c k l i s t macro
returns the current status the ?list macro. Thus, ? c h e c k l i s t can be used to determine
whether the list file is ON or OFF. The ? c h e c k l i s t macro has the following syntax:

? c h e c k 3 st

The ? c h e c k l i s t macro must abide by the following regulations:

1) ? c h e c k l i s t returns the value, ON, under two conditions:

1.

11.

if the ?list on macro is the most recent ? l i s t macro called

if no ?list macros have been called before to the ? c h e c k l i s t
call, and the compiler LIST option is ON.

..

2) ? c h e c k l i s t returns the value, OFF, under two conditions:

1.

11.

if the ?list o f f macro is the most recent l i s t macro called.

if no ?list macros have been called before to the ? c h e c k l i s t
call, and the compiler LIST option is OFF.

The ?check,list macro is useful when used with the ?xdef macro to save the current
state of the listing option, before turning the option off. Then the listing option can be
returned to its orginal state. For example, considering the following sequence of macro calls:

..

?xdef ?prev l i s t -opt ion { ? c h e c k l i s t }
? l i s t o f f
?include e x t e r n a l f i l e . s o l
?1 i st ? p r e v l i st -opt ion

This sequence of calls illustrates a use for ?check,list . The intention is to include a file,
with the listing option off. Once the file is ?included, however, the listing file is returned
to its original setting. The orginal setting is saved by the first call to ?xdef. If the listing
option were ON, this call would be the equivalent of

?def ?prev,l ist-option {ON}

Thus, the last line expands to: ?list ON. Saving the state of the listing option is some-
times necessary to avoid the error of turning the listing ON when it was originally OFF.

SOL Mucros - Advanced Material C-19

C.4.6 THE ?COMPONENT-NAME MACRO

The ?componentname macro is useful when used with the ?xdef macro inside of ASSEM-
BALGEs or COMPONENTS. The ?component name macro returns the current ASSEMBLAGE nesting
in extended identifier notation. The ?componentname macro has the following syntax:

?component dame

The function of the ?componentdame macro is illustrated by the following example:

ASSEHBLAGE outer (0 , ’>
SUHHARIZE

SUm

END SUHHARIZE

COHPOIIEIT one-in (I, ’ ’1
COHPOPEIT two-in (2, ’ ’>

sum = 12
END two-in
COHPOIIEPT same-as-two (2, ’ ’1

sum = I S
?xdef ?comp <?component-name)

END same-as-two
EID one-in
COHPOPEPT same-as-one (1. ’1

EID same-as-one
sum = sum?comp + 4

EID outer

In this example, the ?xdef is equivalent to:

? def ? comp { Q s ame -as ,t wo @one -i nQ out e r }
Thus, the call to ?comp is replaced with:
Qsame-as-twoQone-inQout er .
In this way, sum = sum?comp + 4 becomes the SOL statement:

sum = sumQsame-as-tvoQone,incDouter + 4

hiore information on the extended identifier notation, and on ASSEMBLAGES themselves
can be found in chapter 7.

C.4.7 THE ?APPEND AND ?XAPPEND MACROS

I. ?APPEKD MACRO
The ?append macro appends lines of text to the end of the replacement text of an existing

macro. The ?append macro is much like ?def, except that the existing replacement text is
saved, and the new lines of text are tacked on .

SOL Macros - Adranced iClaterial C-20

A

The ?append macro has the following syntax:
?append (macro name) { (append text) }
where :

(macro name) is the name of the existing macro. Consists of the symbol, ?,
followed immediately by a SOL identifier.

is the text to be appended on the end of (macro name) ,
can be any characters, with stipulations on the use of braces,
This section is delimited by the open and close braces, "{"
and "}."

(append text)

The following rules govern how the ?append macro can be used in a SOL program:

An ?append macro can appear anywhere in a SOL program blanks can ap-
pear. However, an ?append CANNOT appear immediately after an ?in-
clude macro, on the same line as the ?include macro.

It is ILLEGAL to ?append t e x t to an undefined macro; an error message
will result.
It is ILLEGAL to ?append a call to a macro to itself e.g. ?append ?macl
{?maci} . No error message is given, and an infinite loop will result. In other
words, this is BAD, don't do it. Also, don't do things like the following either:

?def ?a (6)

?def ?b {?a}

?append ?a {?b} ! BAD appends ?a to i t s e l f .

hlacro calls in the append text are not expanded a t the time of the append,
just as macros in the replacement text of a ?def are not expanded until the
macro being defined is called. (See section C.4 of this chapter)
The ?append macro appends LINES of text to the end of an existing macro;
it does not append text onto the last line of an existing macro. For example,

?def ?a { X =}
?append ?a (12)

a call to ?a expands to be:
X =
12
not: X = 12

3 c-

11. ?XAPPEND MACRO
The ?xappend macro acts exactly like the ?append macro, but the append text is handled

somewhat differently. In an ?xappend, all macros in the append text are expanded when the
?xappend OCCURS. With an ?append, macros in the append text are not expanded until
the macro being appended to is CALLED. Thus, the difference between an ?xappend and
?append is analagous to the difference between ?xdef and ?def. The difference between
?xappend and ?append is best illustrated with an example. Consider the following:

Example 1 Example 2

?def ?macl (6)
?def ?mac2 (X = 12)
?xappend ?mac2 {x = ?macl}
?def ?macl (9)
?mac2 ?mac2

?def ?macl (6)
?def ?mac2 {X = 12)
?append ?mac2 {x = ?macl)
?def ?macl (9)

In example 1, ?macl is expanded when the ?xappend to ?mac2 occurs. Thus, the ?xap-

?append ?mac2 {x = 6)

When ?mac2 is called on the last line, it expands to be:
x = 12.
X - 6

However, in example 2, ?macl is expanded when ?mac2 is called, on the last line. By
this time, ?mac1 has been redefined. Therefore, the call to ?ma& in example 2 expands to
be:

pend on the third line is equivalent to:

x = 12.
x = 9

Thus, a call to ?xappend is equivalent to a call to ?append except that the macros in the
?xappend’s append text are expanded before the text is appended. Aside from the different
expansion times of macros in the append text, ?xappend and ?append are equivalent.

C.5 SUhlMARY OF hlACROS

In general, all macro calls or definitions abide by the following rules:

A macro call is expanded nearly anywhere it appears in a SOL program, with
the following exceptions:

Macro calls are NOT expanded when a macro is defined; the
expansion occurs when the defined macro is called. For example:

1)

0

?def ?macl { x = 2)
?def ?mac { ?mac 1 }
?def ?macl {x = 4)
?mac

SOL ;Macros - Advanced Material C-22

?

The call to ?mac will expand to: x = 4 (?maci expanded). If
?macl had been expanded when ?mac was defined, the replace-
ment text would have been x = 2.

0 Macro calls are NOT expanded inside SOL comments or SOT,
st rings.

Note: When strings are passed as macro parameters, the quote marks
are stripped off in the replacement text. (See C.2.2.2, Example
1, item 3) for details)

A user defined or predefined macro can appear anywhere in a SOL program
its replacement text can legally appear. (See section C.4 of this appendix for
information about predefined macros)

All macro expansions occur a t COMPILE TIME. The result of expanding all
macros will be the same as if the corresponding replacement, text was typed
instead of each macro call.

The replacement text will appear in the compiler LISTING instead of the
macro call.

2)

3)

4)

There are some exceptions to the above guidelines, as covered in previous sections.

SOL hrlacros - Advanced Material C-23

Index

!, 2-8, 2-11
-, 2-8
=, 2-8
[, 2-8
#, C-6, C-7, C-11, C-14
&?, 2-8
\, 2-8

~

!

I

~

*, 2-8, 6-24
{, 2-8, C-4, C-11, C-14
}, 2-8, C-4
I , 2-8
’, 2-8, c-10
(7 2-8
1, 2-8
)p, 2-8, 4-2
**, 2-8, 4-2
+, 2-8, 4-2
,, 2-8 -. 4-2
. a d . , 2-8, 4-3
. eq . , 2-8, 4-3
. f a l s e . , 2-8
.ge . , 2-8, 4-3

. l e . , 2-8, 4-3

. I t * , 2-8, 4-3

. n e . , 2-8, 4-3

.not., 2-8, 4-3

. o r . , 2-8, 4-3

. g t . , 2-8, 4-3

I . t r u e . , 2-8
1, 2-8, 4-2
/*, 2-8, 6-24
:, 2-8
;, 2-8

I

?, 2-8, C-1, C-11, C-14
?append, C-20
?check list, c-19
?component name, C-20
?def, C-2, c-3, c-4, C-16
?include, C-17

?list, C-18, C-19
?xappend, C-22
?xdef, C-17
@, 2-11
%, 2-8
ABS, 10-2
actual parameters, 9-2, 9- 11

dependent, 9- 10
independent, 9-10
restrictions on, 9-9

addition, 4-2
ADS,

arithmetic,
optimize statement, 6-23

assignments, 6-2
operators, 2-8, 4-2
precedence rules for, 4-4

definition and syntax, 7-1, 7-3
example of, 7-9, 7-13
iteration. 7-29

assemblage,

restrictions on, 7-28
syntax of, 7-27

restrictions on, 7-3
scope rules, 7-24
summarization variable,

declaration, 7-5
use of, 7-9

assignment statement,
compatibility rules, 3-4
definition and syntax of, 6-2

ATAN, 10-2
block,

FORTRAN, 6-24
definition, 11-1

character set, 2-7
command procedures,

SOL, 1-2
LSOL, 1-5

comments, 2-11, C-17
compatibility rules,

#-

Index- 1

compatibility rules (continued):
assignment compatibility, 3-4
operator, 3-5
parameter passing, 3-4
printing formats, 6-6, 6-8, 6-9, 6-10, 7-17

compile, 1-1, 1-2, 1-3, 1-5
options, 1-3

cross reference (x), 1-4
listing (l), 1-4
object code (f), 1-5
parse trace (p), 1-5
print rules (d), 1-5

component,
definition and syntax, 6-22, 7-1, 7-3
example of, 7-13
iteration, 7-29

restrictions on, 7-28
syntax of, 7-27

macro for, (2-20
restrictions on, 7-3
scope rules, 7-24, 11-4
summarization variable, 7-5

declaration, 7-5
conditional do loop,

definition and syntax, 6-21
restrictions on, 6-22;

restrictions on, 8-5
scaling, 8-6
syntax, 8-5
usage, 8-6, 8-7

constraints,

continuation lines, symbol, 2-1 1
convergence,

cos, 10-2
cross reference,

d,

data types,

for assemblages, 7-28
for components, 7-25

compiler option, 1-4

compiler option, 1-5

integer, 3-1
logical, 3-2
overview, 2-2
real, 3-2

decimal notation, 3-2
declaration,

explicit, 2-3
implicit, 2-3
in subroutines, 5-6

declaration (continued):
main program syntax, 5-1
of subroutines, 9-3

inside another subroutine, 5-6
restrictions on, 5-4
syntax, 5-3

of summarization variables, 7-5
of title for summarize print, 7-14
of variables, 5-2

restrictions on, 5-3
syntax, 5-2

restrictions on, 5-1
DECLARE, 5-1
default,

linker input, 1-7
optimization results output, 8-13
optimization settings, 8-12
optimizer switches, 8-8
summary title, 7-17

dependent parameters,
actual, 9-10
formal, 9-8
restrictions on, 9-10

design variable,
syntax of, 8-2

design variables,
bounds, 8-4
restrictions on, 8-4
syntax, 8-4
usage, 8-7

division, 4-2
do loops,

conditional, 6-21
iterative, 6-17

restrictions on, 6-6
syntax, 6-6

SOL program, 2-6
assemblage, 7-9, 7-11, 7-25, 7-26
comments, 2-1 1, C-4
component, 7-9, 7-11, 7-14, 7-21, 7-25, 7-26,

cross reference listing, 1-10
declaration, 5-2

fortran block, 6-26
if statement, 6-12, 6-14, 6-15

E format,

example of,

7-30, C-20

do loop, 6-18, 6-20, 6-22

Index-2

example of (continued):
macros, C-1, C-3, C-4, C-6, C-7, C-S, C-9,

C-10, C-12, C-13, C-14, C-15, C-16,
C-17, C-19, C-20, C-21, C-22

optimization results output, 8-16, 8-19
optimize statement, 8-3, 8-4, 8-7, 8-9, 8-15
print formats, 6-8, 6-9, 6-10, 6-11
print statements, 6-5
source listing, 1-9
subroutine,

call, 2-6, 6-24, 9-5, 9-10
declaration, 2-6, 5-5
implementation, 2-6, 9-7
parameter passing, 9-7, 9-10, 9-11

summarization variable declaration, 7-5,

summarize statement, 7-17
7-6, 7-7, 7-9

EXP, 10-2
exponentiation, 4-2
expressions, 4-1

arithmetic, 4-2;
logical, 4-4
precedence rules for, 4-4
the role of parentheses in, 4-5

extended identifiers, 7-19
external FORTRAN routines,

in a SOL program, 6-24, 6-27
linking with, 1-6, 6-27
verification with out put, 6-29

external file inclusion. C- 17
external files, 1-6

naming conventions, 1-7
F,

compiler option, 1-5
format,

restrictions on, 6 4
syntax, 6-8

dependent, 9-8
independent, 9-6

formal parameters, 9-2, 9-3, 9-1 1

formats for printing, 6-5, 7-16
E, 6-6
F, 6-S
I, 6-9
L, 6-10

FORTRAN,
external routines, 6-24. 6-27
blocks, 6-24

I format,
restrictions on, 6-9

I format (continued):

identifier,
syntax, 6-9

extended notation, 2-10
syntax of, 2-9
versus reserved words, 2-9

extended notation, 7-19

restrictions on, 6-13
scope rules, 6-14, 6-15, 11-3
syntax, 6-12

actual, 9-10
formal, 9-6
restrictions on, 9-6, 9-10

initialization,
of variables, 5-2
summarization variables, 2-3
variables, 2-3

identifiers,

if/then/else,

in dependent parameters,

INT, 10-2
integer,

maximum value of, 3-1
type, 3-1

definition and syntax, 6-17
restrictions on, 6-18

compiler option, 1-4
format,

iterative do loop,

L,

restrictions on, 6-10
syntax, 6-10

link, 1-5
default input source, 1-7
with FORTRAN routines, 1-6, 6-27

linking, 1-1
listing,

and macro calls, C-4, C-lS, C-19, C-22
compiler options, 1-4, C-lS, C-19
cross reference information, 1-12
error messages, 1-1 3
sample of, 1-7
source listing, 1-12

scope definition, 11-1
variables and initializations, 6-15

local,

LOG, 10-2
1 og i c a1 ,

assignments, 6-3
operators, 2-8, 4-3

Index-3

logical (continued) :
precedence rules for, 4-4
type, 3-2

conditional, 6-21

restrictions on, 1-6

call, C-1, C-3, C-4, C-8, C-10, C-12, C-13,

loops,

LSOL, 1-5

macros,

C-15, C-22
restrictions on,

definition of, C-1, C-2, C-3, C-4, C-6, C-S,

delimited, C-11, C-13

overview of, C-1, C-22
parametric, C-5, C-7, C-10, C-13

restrictions on, C-8
predefined,

types of, C-16
simple, C-2, C-7, C-11
restrictions on, C-2, C-4

C-11, C-13, C-16, C-17, C-22

restrictions on, (2-12, C-14

types of, C-1
main program,

declaration section, 5-1
scope rules, 11-2
structure of, 2-6, C-2

max iterations, 7-2s
minimization, 8-7
multi-line statements, 6-1, 6-12
multiplication, 4-2
numbers,

syntax of, 2-10
riiimerical optimization, 6-23. S-1
operat or compatibility, 3-5
operators,

arithmetic, 2-8, 4-2
logical, 2-8, 4-3
precedence of, 4-4
relational, 4-2

optimization,
statement, S-1

optimization results output,
default settings, S-13

OPTIMIZE statement,
constraints, 8-2
definition and syntax, 6-23, 8-1
design variables, 8-2. 8-4
example of, 8-15
options section, 8.1, S-8

OPTIMIZE statement (continued):
restrictions on , 8-2
usage, 8-20

example of, 8-9

compiler options, 1-3
optimization settings, 8-8

from SOL compiler, 6-29
of optimization results, S-15, 8-19
optimization results, 8-16
statements, 6-4, 7-16

compiler option, 1-5

compatibility, 3-4
restrictions on, 9-6, 9-8, 9-9
to macros, C-6, C-7, C-S, C-10 C-14
to subroutines, 6-23, 9-6, 9-8, 9-9, 9-10

LSOL, 1-6
SOL, 1-3
macro, C-5, C-7, C-8, C-17

subroutine, 3-4, 6-23, 9-4, 9-6, 9-7, 9-9,

optimizer options, 8-8, 8-15

option,

output,

P,

parameter passing,

parameters,

restrictions on, C-6

9-10, 9-11
parentheses,

precedence,
to force precedence with, 4-5

arithmetic operators, 4-4
logical operators, 4-4

predeclared functions, 10- 1
print statements,

for optimization results, 8-14, 8-15
print, 6-5
si imii iakc print, 7-1 6

as a SOL reserved word, 2-7
overall structure, 2-6

program,

quote marks, C-10
real,

scientific notation of, 3-2
type, 3-2

recursion, 9-5, 11-3, C-16, C-21
relational operators, 4-2

replacement text for macros, C-2, C-4, C-5,

reserved words, 2-9

precedence rules for, 4-4

C-6, C-17, C-20, C-22

In d ex -4

routines,
subroutines, 6-23

RUN command, 1-7
scientific notation, 3-2
scope rules,

assemblages, 7-21
components, 7-24, 11-4
if/then/else, 6-14, 11-3
main program, 11-2
subroutine, 9-12, 11-2

SIN, 10-2
SOL, 1-2

restrictions on, 1-2
SQRT, 10-2
statements, 2-1

assemblage definition, 7-1
assignments, 6-2
component definition, 6-22, 7-1
if/t hen/else, 6-12

optimization, 6-23, 8-1
printing, 6-4, 7-16
restrictions on, 6-1
subroutine call, 6-23, 9-5

loops, 6-17

subroutine, 2-5
call, 6-23, 9-2, 9-5

restrictions on, 9-5
concept, 9-1
declaration, 5-1, 5-3, 9-2, 9-3
declaration section, 5-6
implementation, 9-2

restrictions on, 9-4
syntax, 9-3

parameters, 6-23, 9-4
scope rules, 9-12, 11-2

subtraction, 4-2
summarization variable,

declaration, 7-5
expression variable, 7-1, 7-7

initialization, 7-27
printing, 7-16, 7-18, 7-21
restrictions on, 7-5
simple variable, i - 1 . 7-7
use of, 7-2, 7-10, 7-12, 7-21, 7-22

summarize statement, 7-16
restrictions on, 7-16
syntax, 7-16
title for, 7-14, 7-17, 7-18

use of, 7-10, 7-12

summary title, 7-15
symbols, special, 2-8

TAN, 10-2
type checking,

kinds of, 3-3
of assignments, 3-4, 6-3, 6-4
o f operators, 3-5
of subroutiric j)ara.mcttcrs, :b1

declaration, 5-1, 5-2, 5-2
initialization of, 2-3, 6-14, 7-27, 9-4, 11-2

initialization versus declaration, 5-2

compiler option, 1-4

variable,

11-3, 11-4

x,

Index-5

~~ ~

Report Documentation Page
2. Government Accession No. 1. Report No.
1

3. Recipient's Catalog No.

NASA TM-100566
4. Title and Subtitle 5. Report Date

The Pre l im inary SOL Reference Manual

7. AuthorM

Stephen H. Lucas and Stephen J . S c o t t i

9. Performing Organization Name and Address

January 1989

8. Performing Organization Report No.

10. Work Unit No.

506-80- 3 1-04

7. Key Words (Sugpsted by Authork))

Opt imizat ion, non l inear mathematical

NASA Langley Research Center
Hampton, VA 23665-5225

18. Distribution Statement

Unc lass i f i ed - Un l im i ted

12. Sponsoring Agency Name and Address

9. Security Classif. (of this report)

Uncl ass i f i ed

Nat ional Aeronautics and Space Admin is t ra t ion
Washington, DC 20546-0001

20. Security Classif. (of this page) 21. No. of pages 22. Price

Unc lass i f i ed 20 3 A 10

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring 6gency Code

15. Supplementary Notes

Stephen H. Lucas, Vigyan Research Assoc., Inc. , Hampton, V i r g i n i a .
Stephen J . S c o t t i , Thermal S t ruc tures Branch, S t ruc tu ra l Mechanics D iv i s ion ,

NASA Langley Research Center, Hampton, V i r g i n i a .
Th is document i s a re ference f o r work described i n NASA TM 100565.

6. Abstract

The S iz ing and Opt imiza t ion Language, SOL, a h igh- leve l special-purpose
computer language has been developed t o expedi te a p p l i c a t i o n o f numerical op t im iz -
a t i o n t o design problems and t o make the process l e s s error -prone. Th is document
i s a re ference manual f o r those wish ing t o w r i t e SOL programs.
a v a i l a b l e for DEC VAX/VMS systems. A SOL package i s a v a i l a b l e which inc ludes the
SOL compi ler and runt ime l i b r a r y rou t ines . An overview o f SOL appears i n NASA
TM 100565.

SOL i s p resen t l y

programming , computer 1 anguages ,
design too l s , SOL Subject Category 61

I 1 I

LISA FORM 1 0 OCT 86
For Sale by t h e Nat ional In fo rmat ion Service, Sp r ing f i e ld , Va. 22161

